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this is called an infinite series
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The partial sums form a sequence 
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and the series is called convergent

(the limit of the 

sequence of partial 

sums exists and is finite)

(by adding sufficiently many terms of the series, we can get as close as we like to the number .)s

1

2 2 2 2
2

3 9 27 3n−
⇒ + + + + + +� � 1

1

2

3n

n

∞

−
=

=∑

{ }
1

8 26 80
2, , , ,

3 9 27
n n

S
∞

=

 
=  
 

� It seems like lim 3
n

n

S
→∞

=

3=

We can show that the sum is 3 since this series is an example 

of a special type of series called a geometric series.

otherwise the series is called divergent

1
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The harmonic series  diverges.

We will show this in 10.3
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A  is one in which each term is obtained from the 

preceding one by multiplying it by the common ratio .r

geometric series
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this only converges for certain values of .r
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The geometric series  converges to the sum of  if 1
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The geometric series diverges for all other values of r

We saw in section 10.1 :
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Back to our example:
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Represent 2.15 as an improper fraction by using a geometric series.
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a geometric series with  and 

100 100
a r= =

15
100

1
100

1 1

a
s

r
= =

− −

15
100

99
100

15

99
= =

5

33
=

5
2.15 2

33
=

66 5

33

+
=

3
2.15

71

3
=

Math 104 – Rimmer

10.2 Series

A  is one in which the middle terms cancel

and the sum collapses into just a few terms.

telescoping series
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Example:
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If the series  is convergent, then lim 0.
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If lim 0 or lim  does not exist, then the series  is divergent.
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Test for Divergence :
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There is no way that this sum could 

converge to some finite number since 

the terms approach 3 as .
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so this series diverges by the .Test for Divergence
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Just remember that if you get 0 for the limit, you  conclude that 

the series converges.  This just means that it has a chance to converge.

can't
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