Alternating Series Estimation Theorem

If the alternating series $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}\left(\right.$ where $\left.b_{n}>0\right)$ satisfies:
i) $\lim _{n \rightarrow \infty} b_{n}=0$
ii) $\left\{b_{n}\right\}$ is a decreasing sequence
then $\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1}$

The size of the error is at most the size of the first omitted term.
$\left|s-s_{7}\right| \leqslant b_{8}$
The actual sum is between $s_{n}-b_{n+1}$ and $s_{n}+b_{n+1}$

$\Rightarrow R_{7}$ negative $\left\{\begin{array}{l}a_{8} \text { negative positive } \\ R_{7} \text { positive } \\ S-s>0 \Rightarrow\end{array}\right.$
$s_{7}-b_{8} \leq S \leq s_{7}+b_{8}$
$\underset{\substack{ \\S-S_{7}<0 \\ \rightarrow}}{ } S_{7}<S_{7} \mid S_{7}-S_{7}>0 \Rightarrow S>S_{7}$
$\rightarrow S_{7}$ overestmules $S S_{7}$ underestimates S

The error committed in using the 9 th partial sum to approximate the total sum is R_{9}
The size of this error is at most the size of the first omitted term.

$$
\begin{aligned}
\left|R_{9}\right|=\left|s-s_{9}\right| \leq \frac{1}{100} \quad & \frac{-1}{100} \leq s-s_{9} \leq \frac{1}{100} \\
& s_{9}-\frac{1}{100} \leq s \leq s_{9}+\frac{1}{100} \quad \begin{array}{l}
\text { The actual sum is between } \\
s_{n}-b_{n+1} \text { and } s_{n}+b_{n+1} .
\end{array}
\end{aligned}
$$

The sign of the error is the sign of the first omitted term.

$$
\begin{aligned}
& R_{9}=s-s_{9}<0 \quad \Rightarrow s_{9}>s \quad s_{9} \text { is an overestimate } \\
& \text { since } a_{10}=-\frac{1}{100}
\end{aligned}
$$

Taylor Serles Estimation Theorem

Taylor's Formula
If f has derivatives of all orders in an open interval I containing a, then for each positive integer n and for each x in I,

$$
\begin{align*}
f(x)=f(a) & +f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots \\
& +\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n}(x) \tag{1}
\end{align*}
$$

where

$$
\begin{equation*}
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1} \quad \text { for some } c \text { between } a \text { and } x . \tag{2}
\end{equation*}
$$

If $R_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ for all $x \in I$, we say that the Taylor series generated by f at $x=a$ converges to f on I, and we write

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k} .
$$

Consider the polynomial $1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}$ as an approximation to e^{x} on the interval
$-2 \leq x \leq 2$. What is the best bound on the error for this estimate that is given by Taylor's inequality?
$\begin{array}{llllll}\text { (a) } 1 / 24 & \text { (b) } e / 12 & \text { (c) } 2 e^{2} / 3 & \text { (d) } e^{3} / 4 & \text { (e) } 3 e^{4} / 2 & \text { (f) } e^{5}\end{array}$
$f(x)=e^{x} \quad$ The Taylor series is centered at $a=0$
$I=(-2,2)$
$\left|R_{n}\right| \leq M \frac{|x-a|^{n+1}}{(n+1)!}$
$n=3$ and $P_{3}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}$
M is the upper bound on the 4th derivative of $f(x)$ choosing an x in I
$\left|f^{(4)}(c)\right| \leq M \quad c$ in $(-2,2)$
$f^{(4)}(c)=e^{c} \quad$ choose c to make this as big as possible $\Rightarrow c=2 \quad$ and $M=e^{2}$
$\left|R_{3}\right| \leq M \frac{|x-0|^{4}}{4!} \Rightarrow\left|R_{3}\right| \leq \frac{e^{2}}{24}|x-0|^{4}$
choose x to make $|x|^{4}$ as big as possible $\Rightarrow x=2$ or -2

$$
\Rightarrow\left|R_{3}\right| \leq \frac{e^{2}}{24}(2)^{4} \Rightarrow\left|R_{3}\right| \leq \frac{16 e^{2}}{24} \quad\left|R_{3}\right| \leq \frac{2 e^{2}}{3}
$$

