

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \underbrace{1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \frac{1}{25} - \frac{1}{36} + \frac{1}{49} - \frac{1}{64} + \frac{1}{81} - \frac{1}{100} + \frac{1}{121} - \frac{1}{144} \cdots}_{R_9}}{s}$$
The error committed in using the 9th partial sum to approximate the total sum is R_9
The size of this error is at most the size of the first omitted term.
 $|R_9| = |s - s_9| \le \frac{1}{100} \implies \frac{-1}{100} \le s - s_9 \le \frac{1}{100}$
 $s_9 - \frac{1}{100} \le s \le s_9 + \frac{1}{100}$ The actual sum is between
 $s_n - b_{n+1}$ and $s_n + b_{n+1}$.
The sign of the error is the sign of the first omitted term.
 $R_9 = s - s_9 < 0 \implies s_9 > s$ s_9 is an overestimate
 $\operatorname{since} a_{i_0} = -\frac{1}{100}$

Fall 2011
9. Which of the following is the best approximation of
$$\ln(\frac{11}{10})$$
?
(A/0 (B) $\frac{1}{10}$ (C) $\frac{x}{100}$ (D) $\frac{x}{100}$ (E) $\frac{95}{1000}$ (F) $\frac{99}{1900}$ (G) $\frac{19}{000}$ (H) $\frac{10}{0000}$
 S_{1}
 $\ln(1-x) = -\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} = -x - \frac{x^{2}}{2} - \frac{x^{3}}{3} - \frac{x^{4}}{4} - \cdots$ with $R = 1$
 $1-x = \frac{11}{10}$ $\int_{1} \int_{1} \int$

Taylor Series Estimation Theorem

Taylor's Formula

If f has derivatives of all orders in an open interval I containing a, then for each positive integer n and for each x in I,

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x),$$

(1)

where

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1} \quad \text{for some } c \text{ between } a \text{ and } x.$$
 (2)

If $R_n(x) \to 0$ as $n \to \infty$ for all $x \in I$, we say that the Taylor series generated by f at x = a converges to f on I, and we write

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k.$$

Consider the polynomial
$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$$
 as an approximation to e^x on the interval
 $-2 \le x \le 2$. What is the best bound on the error for this estimate that is given by Taylor's
inequality?
(a) $1/24$ (b) $e/12$ (c) $2e^2/3$ (d) $e^3/4$ (e) $3e^4/2$ (f) e^5
 $f(x) = e^x$ The Taylor series is centered at $a = 0$
 $I = (-2, 2)$
 $n = 3$ and $P_3 = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$
 M is the upper bound on the 4th derivative of $f(x)$ choosing an x in I
 $|f^{(4)}(c)| \le M$ c in $(-2, 2)$
 $f^{(4)}(c) = e^c$ choose c to make this as big as possible $\Rightarrow c = 2$ and $M = e^2$
 $|R_3| \le M \frac{|x-0|^4}{4!} \Rightarrow |R_3| \le \frac{e^2}{24} |x-0|^4$
choose x to make $|x|^4$ as big as possible $\Rightarrow x = 2$ or -2
 $\Rightarrow |R_3| \le \frac{e^2}{24} (2)^4 \Rightarrow |R_3| \le \frac{16e^2}{24}$