Math	10)4-Rin	nmer
Hand	in	Hw #	3

Name_ Recitation Number_____

Spring 2013

PROBLEM 7: What is the centroid of the region bounded by the curves $y=x^2$ and $y = 8 - x^2?$

Hint: draw a picture of this region as your first step.

- (a) (-2,3) (b) (2,5) (c) (-1,4) (d) (0,4) (e) (0,3) (f) (1,4)

Math	10)4-R	im	mer
Hand	in	Hw	#	3

Name Recitation Number_____

Fall 2012

- 11. Suppose that the region bounded by $y=4\tan(x^2)$ and the x-axis for $0 \le x \le \frac{\sqrt{\pi}}{2}$ is a thin homogeneous density plate of area A. Then the x-coordinate of the center of mass of the plate is:
- (a) $\frac{2}{A}\pi^2$ (b) $\frac{2}{A}\pi$ (c)* $\frac{1}{A}\ln 2$ (d) $\frac{3}{A}\sqrt{\pi}$ (e) 0 (f) $\frac{e\pi}{2}$

Math	10	4-Rim	mer
Hand	in	Hw#	3

Name_			
_	Recitation Number		

12. What is the area of the surface obtained by rotating the part of the curve $y = \sqrt{4 - x^2}$ from x = 0 to x = 1 around the x - axis?

- A) 4π
- B) 2π
- C) π D) $\sqrt{2}\pi$ E) 3π F) 8π

Fall 2011

- 2. Find the length of the arc of the curve defined by $y = \frac{2}{3}\sqrt{x^3}$ for $0 \le x \le 3$.

- (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{4}$ (C) 4 (D) $5 \ln 3$ (E) $\frac{14}{3}$ (F) $\frac{1}{4}$ (G) $\frac{e}{8}$ (H) $\frac{\ln 3}{2}$

Math	10)4-R	immer
Hand	in	Hw	# 3

Name_

Spring 2011

9. Find the arc length of the graph of $y = \frac{x^3}{3} + \frac{1}{4x}$ between x = 1 and x = 2. [Note: It may be helpful to use identities like $(x^2 + \frac{1}{4x^2})^2 = x^4 + \frac{1}{2} + \frac{1}{16x^4}$.]

- (a) 0 (b) 59/24 (c) $\frac{8}{27}(10\sqrt{10}-1)$ (d) $\pi \ln(2)$ (e) $\frac{3}{8} + \ln(2)$ (f) It is divergent.

10. Consider the graph of $y = \ln(\cos(x))$ between x = 0 and x = 1. Which of the following integrals corresponds to the surface area of the object obtained by rotating this graph about the x-axis?

(a)
$$\int_0^1 2\pi \sqrt{1 + \ln(\cos(x))^2} dx$$

(a)
$$\int_0^1 2\pi \sqrt{1 + \ln(\cos(x))^2} dx$$
 (b) $\int_0^1 2\pi \ln(\sin(x)) \sqrt{1 + \sec^2(x)} dx$ (c) $\int_0^1 2\pi \cos(x) \ln(\sin(x)) dx$ (d) $\int_0^1 2\pi \sec(x) \ln(\cos(x)) dx$ (e) $\int_0^1 2\pi x^2 \sin(x) \cos(x) \ln(x) dx$ (f) $\int_0^1 2\pi \sin^2(x) \sqrt{1 + \ln(x)^2} dx$

(c)
$$\int_0^1 2\pi \cos(x) \ln(\sin(x)) dx$$

(d)
$$\int_0^1 2\pi \sec(x) \ln(\cos(x)) dx$$

(e)
$$\int_{0}^{1} 2\pi x^{2} \sin(x) \cos(x) \ln(x) dx$$

(f)
$$\int_0^1 2\pi \sin^2(x) \sqrt{1 + \ln(x)^2} dx$$

Fall 2010

- 7. What is the arclength of the part of the curve $y = \frac{1}{12}e^x + 3e^{-x}$ for $\ln 2 \le x \le \ln 4$?

- (A) $\frac{5}{12}$ (B) $\frac{1}{2}$ (C) $\frac{7}{12}$ (D) $\frac{2}{3}$ (E) $\frac{3}{4}$ (F) $\frac{5}{6}$ (G) $\frac{11}{12}$ (H) 1

Math 104-Rimmer
Hand in Hw # 3

Recitation Number

Spring 2010

10. An artist is designing a wine glass in a flower shape, which can be generated by rotating the region bounded by $y = \sqrt{x}$ and x = y, between x = 0 and x = 1, about x-axis. What is the surface area (which contains both the inside and the outside surfaces) of such a glass?

(a)
$$\left(\frac{8\sqrt{2}-4}{3}+\sqrt{2}\right)\pi$$
 (b) $\left(\frac{8\sqrt{2}-4}{3}+\sqrt{5}\right)\pi$ (c) $\left(\frac{8\sqrt{2}-4}{3}+1\right)\pi$

(b)
$$\left(\frac{8\sqrt{2}-4}{3} + \sqrt{5}\right)\pi$$

(c)
$$\left(\frac{8\sqrt{2}-4}{3}+1\right)\pi$$

Name

(d)
$$\left(\frac{5\sqrt{5}-1}{6}+\sqrt{2}\right)\pi$$
 (e) $\left(\frac{5\sqrt{5}-1}{6}+\sqrt{5}\right)\pi$ (f) $\left(\frac{5\sqrt{5}-1}{6}+1\right)\pi$

(e)
$$\left(\frac{5\sqrt{5}-1}{6}+\sqrt{5}\right)\pi$$

$$(f) \left(\frac{5\sqrt{5}-1}{6}+1\right)\pi$$

2. Find the volume of the solid obtained by rotating the region bounded by the curves

$$y = e^{x^2}$$

and

$$y = 0$$
 and $x = 0$

$$x = 0$$

 $\quad \text{and} \quad$

$$x = 2$$

about the y-axis.

A.)
$$4\pi e^4$$

B.)
$$2\pi e^4$$

A.)
$$4\pi e^4$$
 B.) $2\pi e^4$ C.) $2\pi (e^4 - 1)$ D.) $\pi (e^4 - 1)$ E.) $\pi \sqrt{e}$

D.)
$$\pi(e^4 - 1)$$

Name_

E.)
$$\pi \sqrt{\epsilon}$$

F.)
$$\pi e$$

1. Find the volume of the solid obtained by rotating the region bounded by the curves

$$y = x^2, \qquad y = 0, \qquad x = 2$$

about the line x = 4.

A.)
$$10\pi/3$$

B.)
$$16\pi/3$$

B.)
$$16\pi/3$$
 C.) $20\pi/3$ D.) $32\pi/3$ E.) $40\pi/3$ F.) $64\pi/3$

D.)
$$32\pi/3$$

E.)
$$40\pi/3$$

F.)
$$64\pi/3$$

Math	10)4-Rin	nmer
Hand	in	Hw #	3

ANSWERS:

Spring 2013 # 7: D

Fall 2012 # 11: C

SPRING 2012 # 12: A

FALL 2011 # 2: E

SPRING 2011 # 9: B

SPRING 2011 # 10: D

FALL 2010 # 7: **G**

SPRING 2010 # 10: D

SPRING 2007 # 2: D

SPRING 2006 # 1: E