Spring 2012

13. Find the volume of the solid generated by revolving the region bounded by the graphs of $y = x^2$ and y = 1 around the x - axis.

- A) $\frac{8}{5}\pi$ B) $\frac{1}{5}\pi^2$ C) $\frac{4}{5}\pi$ D) 2π E) $\frac{14}{15}\pi$ F) $\frac{16}{5}\pi$

Fall 2011

- 3. Find the volume obtained by rotating the region between the graph of $y = \frac{1}{2}\sin^2(x^2)$ and the x-axis for $0 \le x \le \sqrt{\pi}$ about the y-axis.

- (A) $\frac{\pi}{2}$ (B) $\frac{\pi^2}{4}$ (C) $\frac{5}{4}$ (D) $\frac{3\pi^2}{4}$ (E) $\frac{1}{2}$ (F) $\frac{1}{4}$ (G) $\frac{\pi}{8}$ (H) $\frac{\pi^2}{8}$

Math	10	4 R	immer
Hand	in	Hw	# 2

Name_

Spring 2011

2. A pyramid with a square base lies on the x, y-plane, with the vertices of its base at the points (1,1), (1,-1), (-1,1), (-1,-1). The height of the pyramid is 2, and the vertex of the pyramid lies directly over the origin of the x, y-plane. What is the volume of the pyramid?

- (a) 2 (b) 3 (c) 5/2 (d) 8/3 (e) 11/4 (f) 18/5

Fall 2010

3. Find the volume of the solid obtained by rotating the region bounded by the x-axis, the line y = 1, the curve $y = \ln(x)$, and the line x = 1/2 about the y-axis.

(A)
$$\pi(e-2)$$
 (B) $2\pi\left(\frac{e^2}{4} - \frac{3}{4}\right)$ (C) $2\pi\left(\frac{e^2}{4} + \frac{3}{4}\right)$ (D) $\pi\left(\frac{1}{2}e^2 - \frac{3}{4}\right)$

(E)
$$\frac{\pi}{8}(4e^2 - 3 - 2\ln 2)$$
 (F) $\pi\left(e - \frac{3}{2}\right)$ (G) $\frac{e\pi}{2}$ (H) $\pi\left(\frac{3}{4} + \frac{e^2}{2} - e\right)$

Math	10	4 R	immer
Hand	in	Hw	# 2

Name_

Spring 2010

2. Find the volume of the solid obtained by rotating the region bounded by the curves y = 1/x and the x-axis between x = 1 and x = 2 about the x-axis.

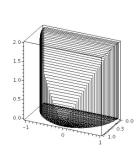
- (a) π (b) $\pi/2$ (c) $\pi/3$ (d) $\pi/4$ (e) $2\pi/3$ (f) $3\pi/4$

Spring 2010

3. Find the volume of the solid obtained by rotating the region bounded by the curves y = x and $y = x^2$ about the y-axis.

- (a) $\pi/2$ (b) $\pi/3$ (c) $\pi/4$ (d) $\pi/5$ (e) $\pi/6$ (f) $\pi/7$

Spring 2009


The base of a solid is a semi-circular disk $\{(x,y)|x^2+y^2\leq 1,\,x\geq 0\}$. Cross sections perpendicular to 3. the x-axis are squares with their vertices on the semi-circle. Compute the volume of the solid.

The Solid

- b) π^2 c) $\frac{2\pi}{3}$ d) $\frac{\pi^2}{4}$ e) 1

f) 4

Fall 2008

2. The volume of the solid generated by revolving the region bounded by the curves $x = y^2$ and y = x - 2about the y-axis

- a) $\frac{20\pi}{3}$ b) $\frac{72\pi}{5}$ c) $\frac{42\pi}{5}$ d) $\frac{13\pi}{2}$ e) $\frac{32\pi}{5}$ f) $\frac{212\pi}{15}$

Math	10)4 F	Rim	ıme	er
Hand	in	Hw	ı #	2	

Name_____

ANSWERS:

SPRING 2012 # 13: A

FALL 2011 # 3: B

SPRING 2011 # 2: D

FALL 2010 # 3: D

SPRING 2010 # 2: B

SPRING 2010 # 3: E

SPRING 2009 # 3: A

FALL 2008 # 2: B