1. Evaluate the integral
(A) 4
(E) $\frac{4}{3}$
$\int_{1}^{\infty} \frac{\ln x}{x^{4 / 3}} d x$
(B) $\frac{4}{9}$
(F) 9
(C) 2
(G) 1
(D) $\frac{1}{2}$
(H) The integral diverges
2. Find the volume of the solid generated by revolving the region in the first quadrant under the curve $y=\frac{10}{x^{2}}$ bounded on the left by $\mathrm{x}=1$, about the $\mathrm{x}-$ axis.

(A)
The integral
(E) $\frac{10 \pi}{3}$
(B) $\frac{25 \pi}{2}$
(F) $\frac{50 \pi}{3}$
(C) $\frac{49 \pi}{2}$
(G) $\frac{75 \pi}{3}$
(D) $\frac{75 \pi}{4}$
(H) $\frac{100 \pi}{3}$
3. Consider both integrals below. Show work by using one of the comparison theorems.
I. $\int_{4}^{\infty} \frac{2+\cos x}{\sqrt[3]{x}} d x$
II. $\int_{2}^{\infty} \frac{x}{\sqrt{x^{5}+4}} d x$
(A) Both (I) and (II) converge.
(C) (I) converges and (II) diverges.
(B) Both (I) and (II) diverge.
(D) (I) diverges and (II) converges.
4. Let

$$
f(x)=\left\{\begin{array}{cc}
16 x e^{-4 x} & \text { if } x \geq 0 \\
0 & x<0
\end{array}\right.
$$

$\begin{array}{ll}\text { (A) } \frac{1}{2} & \text { (E) } \frac{2}{3}\end{array}$
(B) $\frac{1}{3}$
(F) $\frac{3}{4}$
(C) $\frac{1}{4}$
(G) 1
$f(x)$ is a probability density function. Find its mean.
(D) $\frac{1}{8}$
(H) $\frac{3}{2}$
5. Consider the probability density function $f(x)$ whose graph is displayed below.

Find the probability that $3 \leq x \leq 8$.
$\begin{array}{ll}\text { (A) } \frac{3}{10} & \text { (E) } \frac{1}{2}\end{array}$
(B) $\frac{2}{5}$
(F) $\frac{4}{5}$
(C) $\frac{1}{4}$
(G) $\frac{7}{10}$
(D) $\frac{3}{4}$
(H) $\frac{4}{5}$
6. Solve the initial value problem
(A) 0
(E) 2
(B) e
(F) 3
(C) $\frac{1}{2}$
(G) 4
(D) 1
(H) 5
$x y^{\prime}-\ln x=0 \quad$ with $y(1)=\frac{7}{2}$
Find
$y(e)$.
7. Solve the initial value problem
(A) 0
(E) 2
(B) e
(F) 3
(C) $\frac{1}{2}$
(G) 4
(D) 1
(H) 5
$x y^{\prime}+\frac{1}{2} y=x^{3 / 2} \quad$ with $y(1)=\frac{5}{2}$
Find
$y(4)$.

ANSWERS:

1. F
2. H
3. D
4. A
5. D
6. G
7. H
