Rimmer

Math 104 Practice Midterm 1 Spring 2014

1. Find the volume of the solid that lies between planes perpendicular to the x – axis at x = 0 and x = 1. The cross sections of the solid perpendicular to the x – axis between these planes are semicircles whose diameters run from the curve $y = x^3$ to the curve y = x.

(A) $\frac{\pi}{16}$	(C) $\frac{\pi}{60}$	(E) $\frac{\pi}{40}$	(G) $\frac{\pi}{105}$
(B) $\frac{\pi}{80}$	(D) $\frac{\pi}{24}$	(F) $\frac{\pi}{240}$	(H) $\frac{\pi}{120}$

2. Find the volume of the solid generated by revolving the region bounded by $y = x^2 + 1$, x = 0, and y = 2 about the line y = 2

(A) $\frac{4\pi}{5}$	(C) $\frac{8\pi}{15}$	(E) $\frac{12\pi}{5}$	(G) $\frac{4\pi}{15}$
(B) $\frac{7\pi}{10}$	(D) $\frac{2\pi}{3}$	(F) $\frac{2\pi}{15}$	(H) $\frac{2\pi}{5}$

3. Find the volume of the solid generated when the region bounded by $y = x^2 + 1$, y = -x + 1 and x = 1 is revolved about the y-axis.

(A) 1	(C) $\frac{\pi}{2}$	(E) $\frac{7\pi}{6}$	(G) $\frac{\pi}{8}$
(B) <i>π</i>	(D) $\frac{\pi}{6}$	(F) $\frac{\pi}{4}$	(H) $\frac{5\pi}{6}$
4. Find the (A) $\frac{2}{3}$	arclength of the cur (C) $\frac{511}{9}$	ve $y = 2x^{3/2} + 3$ f (E) $\frac{244}{9}$	From $x = 0$ to $x = 7$ (G) $\frac{112}{3}$
(B) $\frac{1022}{27}$	(D) $\frac{326}{9}$	(F) $\frac{489}{27}$	(H) $\frac{4258}{81}$

5. Find the area of the surface generated by revolving the curve $x = \sqrt{9 - y^2}$ for $-1 \le y \le 1$ about the y-axis. (A) 2π (C) 4π (E) 8π (G) 12π (B) π (D) 24π (F) 36π (H) 15π

6. Find the volume generated when the region bounded by $y = 2 + \sqrt{x-1}$, x = 2, x = 5, and y = 2 is rotated about the x - axis.

(A) $\frac{17\pi}{6}$	(C) $\frac{11\pi}{2}$	(E) $\frac{15\pi}{2}$	(G) 40π
(B) 24π	(D) $\frac{145\pi}{6}$	(F) $\frac{151\pi}{6}$	(H) $\frac{157\pi}{6}$

7. Find the x-coordinate of the centroid of the region bounded by the graph of y = x and $y = \sqrt{x}$.

5/11
1/2
6/11

Problem	Answer
1	G
2	С
3	Ε
4	B
5	G
6	Η
7	Α