Math 103 Pre-Calc Review Part 2 - Due Fri. Sept. 13th

Multiple Choice

Identify the choice that best completes the statement or answers the question.
_ 1. Find the largest value in the domain of the function $f(x)=\sqrt{\frac{3-2 x}{4+3 x}}$.
a. $-\frac{3}{2}$
e. $\frac{2}{3}$
b. $-\frac{2}{3}$
f. $\frac{3}{2}$
c. 0
g. 3
d. 2
h. No largest value
\qquad 2. Which of the following are graphs of functions?

a. I only
e. I and III only
b. II only
f. I, II, and IV only
c. III only
g. II and V only
d. I and II only
h. I,II, III only
3. Let $f(x)=x^{2}-3 x+7$, then $f(2 x)$ is equal to
a. $2 x^{2}-6 x+7$
b. $4 x^{2}-6 x+7$
c. $2 x^{2}-6 x+14$
d. $4 x^{2}-3 x+7$
e. $2 x^{2}+6 x-7$
f. $4 x^{2}+6 x-7$
g. $2 x^{2}-3 x+7$
h. $4 x^{2}-6 x+14$
\qquad 4. Let $f(x)=2-x^{3}$ and $g(x)=3+x$. Find the value of $(f \circ g)(x)$ when $x=-5$.
a. -510
b. -5
c. -2
d. 0
e. 5
f. 10
g. 127
h. 130
5. Relative to the graph of $y=x^{3}$, the graph of $y=\frac{1}{2} x^{3}$ is changed in what way?
a. Compressed horizontally by a factor of 2
b. Shifted 2 units downward
c. Stretched vertically by a factor of 2
d. Stretched horizontally by a factor of 2
e. Shifted 2 units upward
f. Compressed vertically by a factor of 2
g. Shifted 2 units to the right
h. Shifted 2 units to the left
6. Relative to the graph of $y=x^{2}$, the graph of $y=x^{2}-2$ is changed in what way?
a. Shifted 2 units downward
b. Stretched horizontally by a factor of 2
c. Shifted 2 units to the right
d. Stretched vertically by a factor of 2
e. Compressed horizontally by a factor of 2
f. Compressed vertically by a factor of 2
g. Stretched vertically by a factor of 2
h. Stretched horizontally by a factor of 2
\qquad 7. Relative to the graph of $y=e^{x}$, the graph of $y=e^{x+5}$ is changed in what way?
a. Shifted 5 units upward
b. Shifted 5 units downward
c. Shifted 5 units to the right
d. Shifted 5 units to the left
e. Stretched horizontally by a factor of 5
f. Stretched vertically by a factor of 5
g. Compressed horizontally by a factor of 5
h. Compressed vertically by a factor of 5
8. For what value of x is $3^{4-x}=\sqrt{3}$?
a. 0
b. $\frac{1}{2}$
c. 1
d. $\frac{3}{2}$
e. 2
f. $\frac{5}{2}$
g. 3
h. $\frac{7}{2}$
9. Find the value of $\log _{2} \frac{1}{8}$.
a. $\frac{1}{4}$
b. $\frac{1}{3}$
c. 0
d. 1
e. -1
f. 2
g. -2
h. -3
10. Find the value of $\ln \sqrt{e^{3}}$.
a. $\frac{2}{3}$
b. \sqrt{e}
c. $e^{3} / 2$
d. $\frac{3}{2}$
e. e^{3}
f. $e^{3}-2$
g. $2 e / 3$
h. $2 / e^{3}$
11. Find the value of $e^{3 \ln 2}$.
a. $\frac{2}{3}$
b. $\frac{3}{2}$
c. 5
d. 6
e. 8
f. 9
g. 12
h. 18
12. Find the value of $\log _{2} e-\log _{2}(e / 16)$.
a. -2
b. e^{-2}
c. 4
d. e^{16}
e. -4
f. e^{2}
g. 2
h. e^{-16}
13. Solve the equation $e^{2-3 x}=125$.
a. $x=2-\ln 5$
b. $x=2-3 \ln 5$
c. $x=\frac{2}{3}-\ln 5$
d. $x=\frac{2}{3}-3 \ln 5$
e. $x=-\ln 5$
f. $x=-\frac{1}{3} \ln 5$
g. $x=\frac{2}{3} \ln 5$
h. $x=2+3 \ln 5$
14. Solve the equation $\log _{9}\left(\ln \pi^{3}\right)=1$
a. $x=3^{e}$
b. $x=3 e$
c. $x=e / 3$
d. $x=1$
e. $x=e^{2}$
f. $x=1 / e$
g. $x=3 / e$
h. $x=e^{3}$

- 15. Find the exact value of $\tan \left(\cos ^{-1} \frac{\sqrt{2}}{2}\right)$.
a. 1
b. $\sqrt{3}$
c. $\sqrt{2}$
d. $\frac{\sqrt{2}}{2}$
e. 0
f. $\frac{\pi}{4}$
g. $\frac{\pi}{3}$
h. $\frac{\pi}{6}$

16. Find the exact value of $\tan ^{-1}(\cos \pi)$.
a. $-\frac{\pi}{2}$
b. $-\frac{\pi}{4}$
c. 0
d. $\frac{\pi}{4}$
e. $\frac{3 \pi}{4}$
f. $\frac{5 \pi}{6}$
g. $\frac{\pi}{2}$
h. π

Short Answer

17. Each of the functions in the table below is increasing, but each increases in a different way. Select the graph from those given below which best fits each function:

t	1	2	3	4	5	6
$\boldsymbol{f}(\boldsymbol{t})$	26	34	41	46	48	49
$\boldsymbol{g}(\boldsymbol{t})$	16	24	32	40	48	56
$\boldsymbol{h}(\boldsymbol{t})$	36	44	53	64	77	93

(A)
(B)

(C)

18.A function has a domain $[-4,4]$ and a portion of its graph is shown.

(a) Complete the graph of f of its is known that f is an even function.
(b) Complete the graph of f if it is known that f is an odd function.
19. f and g are functions defined by the following table.

x	-3	-2	-1	0	1	2	3
$f(x)$	-5	-4	-3	-2	-1	-2	-3
$g(x)$	-4	1	-1	-2	-1	1	4

Determine the following:
(a) $(f+g)(2)$
(b) $(f-g)(-1)$
(c) $(f \cdot g)(0)$
(d) $(f / g)(3)$
(e) $(f \circ g)(-2)$
(f) $\left(f^{\circ} f\right)(0)$
(g) $(g \circ f)(-1)$
(h) $(g \circ g)(-2)$
20. Evaluate the difference quotient $\frac{f(x)-f(a)}{x-a}$ for $f(x)=\frac{1}{x^{2}}$.

Spring 2011

1. Evaluate the following limit.
$\lim _{h \rightarrow 0}\left(\frac{1}{h}-\frac{1}{h^{2}+h}\right)$
A) $-\infty$
B) -2
C) -1
D) 0
E) 1
F) 2
G) ∞
H) Does not exist.

Spring 2010
2. Find the value of the limit $\lim _{x \rightarrow 1} \frac{2 x^{2}+x-3}{x^{2}-x}$.
a. 5
b. 4
c. 3
d. 2
e. $\frac{7}{2}$
f. $\frac{3}{2}$
g. $\frac{1}{2}$
h. 0

Spring 2010
3. Find the value of the limit $\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{x}-1}$.
a. $\sqrt{2}$
b. 1
c. -1
d. $-\sqrt{2}$
e. 2
f. -4
g. 4
h. -2

Fall 2008

5. Find the value of the limit.
$\lim _{x \rightarrow 2} \frac{\sqrt{x+7}-3}{(x-2)(x+1)}$
A) 0
B) $\frac{1}{3}$
C) $\frac{1}{9}$
D) $\frac{1}{27}$
E) $\frac{1}{18}$
F) Does not exist

Math 103 Pre-Calc Review Part 2 - Due Fri. Sept. 23rd

 Answer Section
MULTIPLE CHOICE

1. ANS: F
2. ANS: F
3. ANS: B
4. ANS: F
5. ANS: F
6. ANS: A
7. ANS: D
8. ANS: H
9. ANS: H
10. ANS: D
11. ANS: E
12. ANS: C
13. ANS: C
14. ANS: H
15. ANS: A
16. ANS: B

PTS: 1

SHORT ANSWER

17. ANS:
$f(t):$ (B)
$g(t):(\mathrm{A})$
$h(t):$ (C)
PTS: 1
18. ANS:
(a)

(b)

PTS: 1
19. ANS:
(a) -1
(b) -2
(c) 4
(d) $-\frac{3}{4}$
(e) -1
(f) -4
(g) 4
(h) -1

PTS: 1
20. ANS:
$\frac{f(x)-f(a)}{x-a}=\frac{-a-x}{a^{2} x^{2}}$

PTS: 1

Spring 2011 \# 1: E
Spring 2010 \# 2: A

Spring 2010 \# 3: E
Fall 2008 \# 5: E

