Math 103 -	Rimmer
Hw # 10	

Name _.			
	Recitation _		

Spring 2012

10. A right triangle whose hypotenuse is $\sqrt{3}$ m long is revolved about one of its legs to generate a right circular cone. Find the radius, height, and volume of the cone of greatest volume that can be made this way.

Math 103 - Rimmer
Hw # 10

Name _______Recitation _____

Fall 2011

10. An isosceles triangle has its vertex at the origin and its base parallel to the x-axis with vertices above the x-axis on the curve $y = 27 - x^2$. Find the largest area the triangle can have.

- A) 40 unit²
- B) 42 unit²
- c) 48 unit²
- D) 50 unit²
- E) 54 unit²
- F) 56 unit²
- G) 60 unit²
- H) 64 unit²

Math 103 - Rimmer
Hw # 10

Name _______ Recitation _____

Spring 2011

10. Jack wishes to construct a cylindrical barrel with a volume of $32\,\pi\,$ ft³. The cost per square foot of the material foe the side is \$ 3 and the cost per square foot for the material for the top and bottom is \$ 6. Find the height of the barrel that can be constructed at a minimum cost.

- A) h = 2 ft.
- B) h = 3 ft.
- C) h = 4 ft.
- D) h = 6 ft.

- E) h = 8 ft.
- F) h = 10 ft.
- G) h = 12 ft.
- H) h = 16 ft.

Math 103 -	Rimmer
Hw # 10	

Fall 2010

13. A right circular cylinder is inscribed in a sphere of radius 3 cm. Find the largest possible volume of such a cylinder.

Spring 2010

16. An open box is made from a 16 inch \times 16 inch piece of cardboard by cutting equal squares from each corner and folding up the sides. For maximum volume, what size squares should be cut out?

Math 103 - Rimmer	
Hw # 10	

Name			
	Recitation		

Spring 2009

12. On open rectangular box has one side of its base 4 feet long and is to have a volume of 200 cubic feet. Find the dimensions for which the amount of material needed to construct the box is as small as possible.

Math 103 -	Rimmer
Hw # 10	

Name ______ Recitation _____

Answers:

Spring 2012 # 10 : h = 1, $r = \sqrt{2}$, $V = \frac{2\pi}{3}$

Fall 2011 # 10 : E

Spring 2011 # 10 : E

Fall 2010 # 13 : $12\pi\sqrt{3}$ cm.³

Spring 2010 # 16: $\frac{8}{3} \times \frac{8}{3}$ in. squares

Spring 2009 # 12: 10' X 4' X 5'