1. Use the rules to fnd the derivative of each function. No need to "simplify".

(i)
$$y = f(x) = \frac{1}{(x^4 - 4x^3 + 8)^3}$$
 (ii) $y = f(x) = \tan^{-1}(e^{x^2})$

(*iii*)
$$y = f(x) = \ln\left(\ln\left(\ln\left(4x^2\right)\right)\right)$$
 (*iv*) $y = f(x) = \ln\left(\sqrt{x}\right)\sqrt{\ln x}$

(v)
$$y = f(x) = \sin^{-1}(2x) \sin 2x$$
 (vi) $y = f(x) = e^{e^{9x}}$

(vii)
$$y = f(x) = (x^3 + 3x + 1)^5 (x^4 - 3x^3 + 1)^4$$

2. Let $y = f(x) = 2x^5 + x^3 + 1$. Let $g(x) = f^{-1}(x)$, the **inverse** function of f(x). Find $g'(4) = f^{-1}(4)$

3. Find the equation of the line tangent to the graph of $x \ln y + e^{xy} - y = 0$ at the graph point (0,1).

4. Use linearization (the tangent line) to estimate the number $\sqrt[3]{1001}$. (Decimal answer is neither required nor desired)

5. Find
$$\frac{dy}{dx} = f'(x)$$
 if $y = f(x) = \frac{(x^2 - 8)^{\frac{1}{3}}\sqrt{x^3 + 1}}{(x^6 - 7x + 1)e^x}$

6.

Values of functions f, g, f', and g' are given in the table below:

x	-1	0	1	2
f	11	7	5	5
g	-3	2	-1	1
f'	1	3	4	$\overline{7}$
g'	2	1	5	2

If h(x) = f(g(x)), what is h'(1)?

7. A conical water tank with vertex down has a radius of 10 ft at the top and is 24 ft high. Water flows ino the tank at a rate of 20 ft³per minute. How fast is the depth of the water increasing when the water is 16 ft deep?

Note: The volume of a (right, circular) cone is $V = \frac{1}{3}\pi r^2 h$