1. Use the rules to fnd the derivative of each function. No need to "simplify".
(i) $y=f(x)=\frac{1}{\left(x^{4}-4 x^{3}+8\right)^{3}}$
(ii) $y=f(x)=\tan ^{-1}\left(e^{x^{2}}\right)$
(iii) $\quad y=f(x)=\ln \left(\ln \left(\ln \left(4 x^{2}\right)\right)\right)$
(iv) $y=f(x)=\ln (\sqrt{x}) \sqrt{\ln x}$
(v) $y=f(x)=\sin ^{-1}(2 x) \sin 2 x$
(vi) $y=f(x)=e^{e^{e^{x}}}$
(vii) $y=f(x)=\left(x^{3}+3 x+1\right)^{5}\left(x^{4}-3 x^{3}+1\right)^{4}$
2. Let $y=f(x)=2 x^{5}+x^{3}+1$. Let $g(x)=f^{-1}(x)$, the inverse function of $f(x)$. Find $g^{\prime}(4)\left[=f^{-1}(4)\right]$
3. Find the equation of the line tangent to the graph of $x \ln y+e^{x y}-y=0$ at the graph point $(0,1)$.
4. Use linearization (the tangent line) to estimate the number $\sqrt[3]{1001}$.
(Decimal answer is neither required nor desired)
5. Find $\frac{d y}{d x}=f^{\prime}(x)$ if $y=f(x)=\frac{\left(x^{2}-8\right)^{\frac{1}{3}} \sqrt{x^{3}+1}}{\left(x^{6}-7 x+1\right) e^{x}}$
6.

Values of functions f, g, f^{\prime}, and g^{\prime} are given in the table below:

x	-1	0	1	2
f	11	7	5	5
g	-3	2	-1	1
f^{\prime}	1	3	4	7
g^{\prime}	2	1	5	2

If $h(x)=f(g(x))$, what is $h^{\prime}(1)$?
7. A conical water tank with vertex down has a radius of 10 ft at the top and is 24 ft high. Water flows ino the tank at a rate of $20 \mathrm{ft}^{3}$ per minute. How fast is the depth of the water increasing when the water is 16 ft deep?
Note: The volume of a (right, circular) cone is $V=\frac{1}{3} \pi r^{2} h$

