Algebra Problems

Math 504-505

Jerry L. Kazdan

1. a) Show that $\sqrt{2}$ is not a rational number.
b) Show that $\sqrt{3}$ is not a rational number.
2. a) Prove that there are infinitely many prime numbers.
b) Prove that there are infinitely many primes of the form $4 n+3$ (the $4 n+1$ case is more difficult).
3. Let $\mathbf{u} \times \mathbf{v}$ denote the cross product in \mathbb{R}^{3}. For a fixed vector \mathbf{u}, for which vectors \mathbf{z} can one solve $\mathbf{u} \times \mathbf{v}=\mathbf{z}$ for \mathbf{v} ? To what extent is the solution unique?
4. If x and y are real numbers, show that the set of matrices of the form $\left(\begin{array}{cc}x & y \\ -y & x\end{array}\right)$ is isomorphic to the field of complex numbers $z=x+i y$.
5. Consider the matrix $A=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right]$.
a) Is there a real invertible matrix P such that $P A P^{-1}$ is a real diagonal matrix? If so, find P. If not, state why not.
b) Is there a complex invertible matrix P such that $P A P^{-1}$ is a complex diagonal matrix? If so, find P. If not, state why not.
c) Think of the elements of A as belonging to the finite field $\mathbf{Z} / 5 \mathbf{Z}$. Is there an invertible matrix P with entries in this finite field such that $P A P^{-1}$ is a $\mathbf{Z} / 5 \mathbf{Z}$ valued diagonal matrix? If so, find P. If not, state why not.
6. Suppose that for a polynomial $p \in \mathbb{Z}[x]$ we have $p(2003)=2003$. Show that p can have at most three different integer roots. [REMARK: 2003 is a prime number.]
7. The quaternions can be defined as expressions of the form $q=x+y \mathbf{i}+z \mathbf{j}+w \mathbf{k}$, where x, y, z, and w are real numbers. They are added as vectors and multiplied using the rules $\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=-1, \mathbf{i} \mathbf{j}=\mathbf{k}=-\mathbf{j} \mathbf{i}, \mathbf{j} \mathbf{k}=\mathbf{i}=-\mathbf{k j}, \mathbf{k i}=\mathbf{j}=-\mathbf{i k}$ and the usual distributive rules. Define the conjugate by $\bar{q}=x-y \mathbf{i}-z \mathbf{j}-w \mathbf{k}$.
a) Compute $q \bar{q}$. Use this to show that every $q \neq 0$ has a multiplicative inverse. Thus show that the quaternions are a field, except they are not commutative under multiplication.
b) Prove that the unit quaternions, that is, those q with $x^{2}+y^{2}+z^{2}+w^{2}=1$ form a group under multiplication, and that this group is isomorphic to $S U_{2}$. Note that clearly the unit quaternions can also be thought of as points on the unit sphere $S^{3} \in \mathbb{R}^{4}$.
c) Let

$$
\mathbf{I}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \mathbf{i}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad \mathbf{j}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \mathbf{k}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) .
$$

Show that the set of matrices of the form $Q=x \mathbf{I}+y \mathbf{i}+z \mathbf{j}+w \mathbf{k}$ is isomorphic to the quaternions.
8. Consider the ring whose elements are

$$
q=a+b i+c j+d k, \quad \text { where } \quad i^{2}=j^{2}=k^{2}=-1, i j=-j i=k,
$$

with $a, b, c, d \in \mathbb{Z} / p \mathbb{Z}$, where p is a prime.
Show that this ring is isomorphic to the ring of 2×2 matrices $\mathbb{Z} / p \mathbb{Z}$ if p is odd but not if $p=2$.
9. Every group of order 437 is abelian. Proof or counterexample.
10. Let G be a finite group of order n and H a subgroup of order k.
a) Prove that n is divisible by k.
b) Conversely, if n is divisible by k, must G have a subgroup of order k ? Proof or counterexample.
11. Let p be a prime number and $G=\mathbb{Z} / p \mathbb{Z}$. Find the total number of group homomorphisms $G \times G \rightarrow G \times G$.
12. If G is a finite group and $x, y \in G$, then $o(x y)=o(y x)$. Proof or counterexample.
13. Let G be a finite abelian group of odd order. Prove that the product of all the elements of G is the identity.
14. a) Let $p(x)$ be a polynomial with real coefficients. If $z \in \mathbb{C}$ is a root, show that \bar{z} is also a root.
b) $p(x)$ be a polynomial with integer coefficients. If $x=5+2 \sqrt{3}$ is a root, show that $x=5-2 \sqrt{3}$ is also a root.
15. Suppose that H is a non-trivial subgroup of the additive group $(\mathbb{R},+)$ of real numbers.
a) Show that either (i) H is infinite cyclic, or (ii) for any $\varepsilon>0$, there is an $x \in H$ with $0<x<\varepsilon$.
b) If H is infinite cyclic, prove that \mathbb{R} / H is isomorphic to the multiplicative group $S^{1}=\{z \in \mathbb{C}:|z|=1\}$ of complex numbers of modulus 1 .
16. Suppose G is a finite group, H is a normal subgroup of G, and P is a Sylow subgroup of H. Prove that $G=H \cdot N_{G}(P)$.
17. In each case, decide whether the two groups are isomorphic:
a) $(\mathbb{Z},+)$ and $(\mathbb{Q},+)$
b) $(\mathbb{R},+)$ and $\left(\mathbb{R}_{>0}, \cdot\right)$
c) $(\mathbb{Q},+)$ and $\left(\mathbb{Q}_{>0}, \cdot\right)$
d) $\left(\mathbb{R}^{*}, \cdot\right)$ and $\left(\mathbb{C}^{*}, \cdot\right)$
18. Suppose $a, b, c \in \mathbb{Q}$ are such that $a+b+c, a b+b c+c a$ and $a b c$ are all integers. Prove that a, b and c are integers. Can you generalize this?
19. Suppose $f(x)=a x^{2}+b x+c$ has real coefficients and no real roots. Prove that the quotient ring $\mathbb{R}[x] /(f(x))$ is isomorphic to the field of complex numbers \mathbb{C}.
20. Suppose we are given a surjective ring homomorphism from the polynomial ring $\mathbb{C}[x]$ onto an integral domain R. Prove that R is isomorphic to either $\mathbb{C}[x]$ or \mathbb{C}.
21. Let $k, n \in \mathbb{N}$ How many group homomorphisms are there from $\mathbb{Z} / k \mathbb{Z}$ to $\mathbb{Z} / n \mathbb{Z}$? Justify your assertions.
22. Let G be a group and let H be the subgroup generated by all elements of order 2 in G. Show that H is normal in G. [Note: If $S=\emptyset$, remember group generated by $S=\{1\}$.]
23. Let G be a finite group and suppose G possesses a (normal) subgroup H with the two properties
a). $(G: H)=2$
b). H has odd order

Show directly (no Sylow, no Cauchy) that G has an element exactly of order 2.
24. Suppose G is a group in which each element $(\neq 1)$ has order 2. Prove that G is abelian.
25. (variant of the previous problem) Let G be a non-abelian group of order 2^{k} for some integer $k \geq 3$. Prove that G has an element of order 4 (no Sylow, no Cauchy).
26. Let G be a finite group and let Φ be the intersection of all the maximal subgroups of G. Suppose that there exists an element $\sigma \in G$ such that σ together with Φ generates all of G. Show that G is a cyclic group.
27. Let $\phi(n)$ be the number of integers q with $1 \leq q \leq n-1$ such that q is relatively prime to n.
a) If $(k, n)=1$, show that $\phi(k n)=\phi(k) \phi(n)$.
b) If p is prime, show $\phi\left(p^{a}\right)=p^{a-1}(p-1)$
28. Let G be a finite group of order g, and let M be a minimal non-trivial subgroup of G. Show that M is cyclic of prime order p. Show further that $p \mid g$.
29. Let A_{4} be the alternating group on four letters. It has order 12. Prove that it has no subgroup of order 6 .
30. Prove that a group is abelian if and only if the map $\phi: a \mapsto a^{-1}$ is an isomorphism.
31. If G is a group of odd order, show that the map $\phi(a)=a^{-1}$ has precisely one fixed point. [Remark: The converse is also true, but harder.]
32. Let ψ be an automorphism of a group G. Write Fix (ψ) for the set of fixed points of ψ, that is,

$$
\operatorname{Fix}(\psi)=\{\sigma \in G \mid \psi(\sigma)=\sigma\}
$$

Show that Fix (Ψ) is a subgroup of G.
33. Let G be a finite group and let S be a non-empty subset of G. Write

$$
\begin{aligned}
Z(S) & =\{\sigma \in G \mid \sigma s=s \sigma \text { for all } s \in S\} \\
N(S) & =\left\{\tau \in G \mid \tau s \tau^{-1} \subseteq S \text { for all } s \in S\right\} .
\end{aligned}
$$

Then $Z(s)$ and $N(S)$ are sub-groups of G.
a) Show that $Z(s) \subseteq N(S)$ and
b) $Z(s)$ is a normal subgroup of $N(S)$.
34. If G is a finite group of order g, and if for each $\sigma \in G$ we have an $n \times n$ invertible matrix (over \mathbb{C}), say $T(\sigma)$, in such a way that $T(\sigma \tau)=T(\sigma) T(\tau)$, show that every eigenvalue of each $T(\sigma)$ is a $g^{t h}$ root of unity.
35. Let $f(x)$ be a monic polynomial with real coefficients. Say

$$
f(x)=p_{1}(x) \cdots p_{k}(x)
$$

is a factorization of f into monic irreducible polynomials with real coefficients (repetitions are permitted). Prove that each $p_{j}(x)$ has one of the forms

$$
x-\alpha \quad \text { or } \quad x^{2}-\beta x+\gamma,
$$

where α, β, and γ are real numbers.
36. Let $f(x)$ be an irreducible polynomial with rational coefficients, and let $f^{\prime}(x)$ be its derivative. Show that there exist two polynomials $p(x), q(x)$ with rational coefficients such that

$$
p(x) f(x)+q(x) f^{\prime}(x)=1
$$

Illustrate this for $f(x)=x^{3}-3 x+1$.
37. Let G be an abelian group and suppose that T is a homomorphism of G to the group $G L(n)$ of $n \times n$ invertible complex matrices. Suppose that for some $\sigma \in G$ the non-zero vector v is an eigenvector of the matrix $T(\sigma)$ with corresponding eigenvalue λ.
a) Show that $\lambda \neq 0$.
b) Show that for each $\tau \in G$, the vector $T(\tau) v$ is also an eigenvector of $T(\sigma)$ with the same eigenvalue λ.
38. a) If p_{1}, \ldots, p_{n} are n given integers and if $\left(p_{1}, \ldots, p_{n}\right)$ appears as a row of an $n \times n$ integer matrix of determinant 1 , show that the p_{j} have no non-trivial common factor.
b) Prove the converse in the case $n=2$, that is, if p_{1} and p_{2} are relatively prime, then $\left(p_{1}, p_{2}\right)$ appears as a row of a 2×2 integer matrix whose determinant is 1 .
39. Let σ be an element of a group and assume the order of σ is finite, say n. Write $\tau=\sigma^{\ell}$. Show that σ and τ have the same order if and only if $(\ell, n)=1$.
40. Let $f(x)=x^{3}-a x+1$, where a is an integer. Prove that $f(x)$ is irreducible over the rationals provided $a \neq 0$ or $a \neq 2$. Further, in the cases $a=0$ and $a=2$, give the factorization of $f(x)$.
41. Let $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ be a polynomial with complex coefficients. Show that by a linear substitution $y=x-\alpha$ for some $\alpha \in \mathbb{C}$ the polynomial $f(x)$ transforms to $g(y)=y^{n}+b_{n-2} x^{n-2}+\cdots+b_{0}$ with no y^{n-1} term. Find α explicitly in terms of the coefficients of f.
42. Let G be a finite group and write Z for the center of G, that is, the subgroup of all elements of G. Prove that the index $(G: Z)$ is never a prime number. [An easier version is to prove that $(G: Z) \neq 2$.]
43. Every prime ideal of $\mathbb{Z}[X]$ is maximal. Proof or counterexample.
44. Give (with proof) an example of a commutative ring R and an ideal I in R which cannot be generated by one element.
45. Let σ be an element of a group G and suppose that σ has order n. Write $n=a b$ with $(a, b)=1$. Show there exist unique elements $\rho, \tau \in G$ with ρ of order a and τ of order b such that $\sigma=\rho \tau=\tau \rho$.
46. Let G be the multiplicative group of 2×2 integer matrices with determinant 1 . Find $\sigma, \tau \in G$ with $\sigma^{4}=\tau^{6}=1$ and G generated by σ and τ. Show further that $\sigma \tau$ has infinite order.
47. For a finite group G, write $\mathbb{Z}[G]$ for the set of formal linear combinations

$$
\sum_{\sigma \in G} \lambda_{\sigma} \sigma, \quad \text { where } \quad \lambda_{\sigma} \in G
$$

Add these component-wise and multiply by using the group law and distributivity. There is a map from the ring $\mathbb{Z}[G]$, so obtained, to Z, namely

$$
\sum_{\sigma \in G} \lambda_{\sigma} \sigma \mapsto \sum_{\sigma \in G} \lambda_{\sigma} .
$$

This is a ring homomorphism. Let I be its kernel. Show that I is generated as an ideal by all elements $\{\sigma-1, \sigma \in G\}$.
48. Let G be a group generated by two elements $\sigma \tau$. Suppose that $\sigma^{3}=\tau^{3}=1$. Prove that $\tau \sigma \tau^{-1} \neq \sigma^{-1}$.
49. Let $\mathbb{N}=\{1,2,3, \ldots\}$ and write Σ for the group of all one-to-one maps of N onto itself having the property:

$$
\text { If } \phi \in \Sigma \quad \text { there is some } n=n(\phi) \text { such that } \quad m>n \text { implies } \quad \phi(m)=m \text {. }
$$

Find all the normal subgroups of Σ.
50. For positive integers n and k, define $d_{k}(n)=\left\{\begin{array}{ll}1 & \text { if } n \nmid k \\ 1-n & \text { if } n \mid k\end{array}\right.$. Show that

$$
\sum_{k=1}^{\infty} \frac{d_{k}(n)}{-k}=\log n \quad(n>1) .
$$

51. Let α be a complex number with the following two properties:
a) α is a root of $X^{n}+a_{1} X^{n-1}+\cdots+a_{n}=0$, where the coefficients are integers.
b) There is a prime number p so that $p \alpha$ is an integer.

Show that α is an integer.
52. For each of the statements below give an example with details or a short statement why such an example cannot exist.
a) A non-cyclic group of order 289 whose center is cyclic.
b) If p is a prime number, a finite field with $2 p^{3}$ elements.
c) An infinite abelian group all of whose (proper) subgroups are finite.
d) A ring with no two-sided ideals but with many left ideals.
e) A vector space V over a field k so that V has 100 elements.
53. Give examples of the following:
a) A finite commutative group that is not cyclic.
b) A commutative ring (that is not a field) with finitely many elements.
c) A commutative ring (that is not a field) with infinitely many elements.
d) A non-commutative ring with infinitely many elements.
e) A non-commutative ring with finitely many elements.
54. For each of the statements below give an example with details or a short statement why such an example cannot exist.
a) For each integer $n \geq 1$, a polynomial $p(x)$ of degree n (with rational coefficients) that is irreducible over the rational numbers.
b) A non-abelian group all of whose subgroups are normal.
c) A non-abelian group all of whose proper subgroups are abelian.
d) A field k in which every homogeneous polynomial in two variables and having degree $d>1$ has a non-trivial zero. [Here "homogeneous" means for some integer j we have $f(c x, c y)=c^{j} f(x, y)$ for all $c \in k$ while a non-trivial zero means $f(\xi, \eta)=0$ for some ξ, η, at least one of which is not zero.]
e) A finite group G of order g and a positive integer h so that $h \mid g$ but G has no subgroup of order h.
55. Let R be a PID with the property that there exists a ring homomorphism $\phi: R \rightarrow \mathbb{Z}$. Prove that ϕ is an isomorphism. [Note: Part of the hypothesis is that $\phi(1)=1$.
56. Prove that the additive group of rational numbers has no proper maximal subgroup.
57. Let G be a finite group and let M_{1}, \ldots, M_{n} be the list of all its maximal subgroups. Write H for the intersection $H=M_{1} \cap \cdots \cap M_{n}$.
a) $H \triangleleft G$.
b) If an element $\sigma \in G$ together with the elements of H generate G, then G is a cyclic group.
58. Suppose that a, b and c are rational numbers satisfying $a+b \sqrt{2}+c \sqrt{3}=0$. Prove that $a=b=c=0$.
59. a) Let G be a finite group such that $G / C(G)$ is cyclic. Here $C(G)$ denotes the center of G. Show that G is abelian.
b) Show that any group of order p^{2} where p is prime is abelian.
60. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that $T(v) \perp v$ for any $v \in \mathbb{R}^{3}$. Show that T is anti-symmetric.
61. Let F be a field with 17 elements.
a) How many roots does the equation $x^{5}=1$ have in F ?
b) How many roots does the equation $x^{4}=1$ have in F ?
62. Give an example of a polynomial ring with invertible elements of positive degree.
63. Does the polynomial $x^{12}-3 x^{8}+1$ have multiple complex roots?
64. Let G be the group of isometries of the three dimensional eucledian space which stabilize a given cube.
a) What is the cardinality of G ?
b) Is G simple? (In other words, does G have a non-trivial normal subgroup?)
c) Does G have an element of order 12?
65. Prove that the multiplicative group of non-zero real numbers does not have a subgroup of index 3 .
66. Denote by M the ring of 5×5 matrices with integer elements.
a) Does M have a subring isomorphic to $\mathbb{Z}[x]$, the ring of one-variable polynomials with integer coefficients?
b) Does M have a subring isomorphic to the factor ring of $\mathbb{Z}[x]$ modulo the ideal generated by $x^{3}(x-1)^{2}$?
67. Does the ring of 3×3 matrices over the reals contain a subring isomorphic to
a) the field of complex numbers?
b) the division ring of quaternions?
68. Compute the endomorphism ring of the additive group Q^{+}of rationals. Does Q^{+} contain maximal subgroups?
69. If F is a division ring such that the multiplicative group of nonzero elements of F is a finite direct sum of cyclic groups, then F is a finite field.
70. Let G be the rotation group of a cube.
a) What is the cardinality of G ?
b) Is G isomorphic to a symmetric group S_{n} for some n ?
71. Suppose that for a polynomial $p \in \mathbb{Z}[x]$ we have $p(2003)=2003$. Show that p can have at most three different integer roots. [REMARK: 2003 is a prime number.]
72. Decompose the group algebras $Q\left(Z_{4}\right)$ and $C\left(Z_{4}\right)$ into direct sums of their indecomposable ideals, i.e., decompose $F[g]$ into a direct sum of its indecomposable ideals where g is the image of x in the factor ring $F[x] /\left(x^{4}-1\right)$ and F is a field Q or C of either rational or complex numbers, respectively.
73. Describe all groups of order 6.
74. Let \mathbb{Z}_{2} denote the field of residue classes modulo 2 and consider the four factor rings:
a). $R_{1}=\mathbb{Z}_{2}[x] /\left(x^{3}+x^{2}\right)$
c). $R_{3}=\mathbb{Z}_{2}[x] /\left(x^{3}+x^{2}+1\right)$,
b). $R_{2}=\mathbb{Z}_{2}[x] /\left(x^{3}+x^{2}+x\right)$
d). $R_{4}=\mathbb{Z}_{2}[x] /\left(x^{3}+x^{2}+x+1\right)$

Determine:
a) Which (if any) of them contain(s) nonzero nilpotent elements?
b) Which (if any) of them contain(s) zero divisors?
c) Which (if any) of them form(s) a field?
d) Whether any two of these rings are isomorphic to each other.
75. If a polynomial $p\left(x_{1}, \ldots, x_{n}\right)$ is the square of a rational function $r\left(x_{1}, \ldots, x_{n}\right)$, show that r must itself be a polynomial.
76. Say A is a commutative ring containing a field k, so that A, as a vector space over k, is finite dimensional. If A is an integral domain, prove that it must be a field. [SUGGESTION: Consider the ideals $\left(a^{n}\right)$), where a is a fixed element of A.]
[Last revised: February 8, 2009]

