Signature	
Dignature	

PRINTED NAME

Math 504 October 22, 2009 Exam 1

Jerry L. Kazdan 10:30 — 11:50

DIRECTIONS: Part A has 5 shorter problems (5 points each) while Part B has 6 traditional problems (10 points each). To receive full credit your solution should be clear and correct. You have 1 hour 20 minutes. Closed book, no calculators, but you may use one 3×5 with notes on both sides. Please box your answers.

PART A: SHORTER PROBLEMS 25 POINTS (5 POINTS EACH)

A-1. Let c be any complex number. Show that $\lim_{n\to\infty} \frac{c^n}{n!} = 0.$

S	Score
A-1	
A-2	
A-3	
A-4	
A-5	
B-1	
B-2	
B-3	
B-4	
B-5	
B-6	
Total	

A-2. Show that $\sin x$ is not a polynomial.

- A-3. Let A be a matrix, not necessarily square. Say V and W are particular solutions of the equations $AV = Y_1$ and $AW = Y_2$, respectively, while $Z \neq 0$ is a solution of the homogeneous equation AZ = 0. Answer the following in terms of V, W, and Z.
 - a) Find some solution of $A\mathbf{X} = 3\mathbf{Y}_1 5\mathbf{Y}_2$.
 - b) Find another solution of $A\mathbf{X} = 3\mathbf{Y}_1 5\mathbf{Y}_2$.
 - c) If A is a square matrix, then $\det A = ?$

A-4. Let $A: \mathbb{R}^3 \to \mathbb{R}^2$ and $B: \mathbb{R}^2 \to \mathbb{R}^3$, so $BA: \mathbb{R}^3 \to \mathbb{R}^3$. Show that BA can not be invertible.

A-5. Let a smooth function g(x) have the three properties: g(0) = 2 g(1) = 0 g(4) = 6. Show that at some point 0 < c < 4 one has g''(c) > 0. To be more specific, find a number m > 0 so that $g''(c) \ge m > 0$.

PART B: STANDARD PROBLEMS 60 POINTS (10 POINTS EACH)

- B-1. Say you have k linear algebraic equations in n variables; in matrix form we write AX = Y. Give a proof or counterexample for each of the following assertions.
 - a) If n = k there is always at most one solution.
 - b) If n > k you can always solve AX = Y.
 - c) If n > k the nullspace of A has dimension greater than zero.
 - d) If n < k then for some Y there is no solution of AX = Y.
 - e) If n < k the only solution of AX = 0 is X = 0.

B-2. Let c_n be a sequence of real numbers that converges to C. Show that their "average" $S_n := \frac{c_1 + c_2 + \dots + c_n}{n}$ also converges to C.

B-3. Compute
$$\iint_{\mathbb{R}^2} \frac{1}{[1 + (2x - y + 1)^2 + (x + y + 3)^2]^2} dx dy.$$

B-4. Is $k(x) = \sqrt{x}$ uniformly continuous in the set $\{x \ge 0\}$? Justify your assertions.

B-5. If the sequence $\{a_n\}$ is bounded and c > 1, show that the series $\sum_{n=1}^{\infty} \frac{a_n}{n^x}$ converges absolutely and uniformly in the interval $c \le x < \infty$.

B-6. Let u(x, y, t) be a solution of the heat equation $u_t = \Delta u$ for (x, y) in a smoothly bounded open set $\mathcal{D} \subset \mathbb{R}^2$ and $t \ge 0$. Assume that the temperature u(x, y, t) = 0 for all points (x, y)on the boundary \mathcal{B} of \mathcal{D} for all $t \ge 0$.

a) Let
$$E(t) := \frac{1}{2} \iint_{\mathcal{D}} u^2(x, y, t) \, dx \, dy$$
. Show that $dE/dt \le 0$.

b) Use this to show that with these zero boundary conditions, if the initial temperature is zero, u(x, y, 0) = 0 for all $(x, y) \in \mathcal{D}$, then u(x, y, t) = 0 for all $t \ge 0$.