Jerry L. Kazdan

October 22, 2009 10:30-11:50

Directions: Part A has 5 shorter problems (5 points each) while Part B has 6 traditional problems (10 points each). To receive full credit your solution should be clear and correct. You have 1 hour 20 minutes. Closed book, no calculators, but you may use one 3×5 with notes on both sides. Please box your answers.

Part A: Shorter Problems 25 points (5 points each)
A-1. Let c be any complex number. Show that $\lim _{n \rightarrow \infty} \frac{c^{n}}{n!}=0$.

Score	
A-1	
A-2	
A-3	
A-4	
A-5	
B-1	
B-2	
B-3	
B-4	
B-5	
B-6	
Total	

A-3. Let A be a matrix, not necessarily square. Say \mathbf{V} and \mathbf{W} are particular solutions of the equations $A \mathbf{V}=\mathbf{Y}_{1}$ and $A \mathbf{W}=\mathbf{Y}_{2}$, respectively, while $\mathbf{Z} \neq 0$ is a solution of the homogeneous equation $A \mathbf{Z}=0$. Answer the following in terms of \mathbf{V}, \mathbf{W}, and \mathbf{Z}.
a) Find some solution of $A \mathbf{X}=3 \mathbf{Y}_{1}-5 \mathbf{Y}_{2}$.
b) Find another solution of $A \mathbf{X}=3 \mathbf{Y}_{1}-5 \mathbf{Y}_{2}$.
c) If A is a square matrix, then $\operatorname{det} A=$?

A-4. Let $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $B: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, so $B A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Show that $B A$ can not be invertible.

A-5. Let a smooth function $g(x)$ have the three properties: $g(0)=2 \quad g(1)=0 \quad g(4)=6$. Show that at some point $0<c<4$ one has $g^{\prime \prime}(c)>0$. To be more specific, find a number $m>0$ so that $g^{\prime \prime}(c) \geq m>0$.

Part B: Standard problems 60 points (10 points each)
B-1. Say you have k linear algebraic equations in n variables; in matrix form we write $A X=Y$. Give a proof or counterexample for each of the following assertions.
a) If $n=k$ there is always at most one solution.
b) If $n>k$ you can always solve $A X=Y$.
c) If $n>k$ the nullspace of A has dimension greater than zero.
d) If $n<k$ then for some Y there is no solution of $A X=Y$.
e) If $n<k$ the only solution of $A X=0$ is $X=0$.

B-2. Let c_{n} be a sequence of real numbers that converges to C. Show that their "average" $S_{n}:=$ $\frac{c_{1}+c_{2}+\cdots+c_{n}}{n}$ also converges to C.

B-3. Compute $\iint_{\mathbb{R}^{2}} \frac{1}{\left[1+(2 x-y+1)^{2}+(x+y+3)^{2}\right]^{2}} d x d y$.

B-4. Is $k(x)=\sqrt{x}$ uniformly continuous in the set $\{x \geq 0\}$? Justify your assertions.

B-5. If the sequence $\left\{a_{n}\right\}$ is bounded and $c>1$, show that the series $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{x}}$ converges absolutely and uniformly in the interval $c \leq x<\infty$.

B-6. Let $u(x, y, t)$ be a solution of the heat equation $u_{t}=\Delta u$ for (x, y) in a smoothly bounded open set $\mathcal{D} \subset \mathbb{R}^{2}$ and $t \geq 0$. Assume that the temperature $u(x, y, t)=0$ for all points (x, y) on the boundary \mathcal{B} of \mathcal{D} for all $t \geq 0$.
a) Let $E(t):=\frac{1}{2} \iint_{\mathcal{D}} u^{2}(x, y, t) d x d y$. Show that $d E / d t \leq 0$.
b) Use this to show that with these zero boundary conditions, if the initial temperature is zero, $u(x, y, 0)=0$ for all $(x, y) \in \mathcal{D}$, then $u(x, y, t)=0$ for all $t \geq 0$.

