
Math 504 Exam Solutions Jerry L. Kazdan
December 8, 2005 12:00 — 1:20

Directions This exam has two parts, the first has four short computations (5 points each) while
the second has seven traditional problems (10 points each).

Part A: Short Computations (4 problems, 5 points each)

A–1. Find a real 2× 2 matrix A (other than A = ±I ) such that A4 = I .

Solution Two solutions are A =
(

1 0
0 −1

)
(reflection across the x-axis and A = ( 0 1

1 0 ) (reflection
across the line y = x). Both of these satisfy A2 = I so clearly A4 = I .

A more interesting example that does not satisfy A2 = I is A =
(

0 −1
1 0

)
(rotation by 90

degrees).

A–2. Find a function u(x, y) satisfying
∂u

∂x
− 2u = 0 with u(0, y) = sin(3y).

Solution This is just the ODE u′ − 2u = 0 with y as a parameter. The general solution
(say using separation of variables) is u(x, y) = C(y)e2x . But sin(3y) = u(0, y) = C(y). Thus
u(x, y) = sin(3y)e2x .

A–3. Say T (x, y, z) = x2 + xy + y3 − z2 gives the temperature at the point (x, y, z). At the point
(1, 1, 1), in which direction should one move so that the temperature increases fastest?

Solution The gradient of a function is a vector pointing in the direction where the function
increases most rapidly. Since

∇f(x, y, z) = (2x + y, x + 3y2, −2z),

the desired direction at (1, 1, 1) is (3, 4, −2). If you prefers, you can use a unit vector in this
direction.

A–4. Compute J :=
∫∫

R2

1
[1 + (2x + y + 1)2 + (x− y + 3)2]2

dx dy .

Solution Make the change of variables

u = 2x + y + 1, v = x− y + 3.

Then
du dv =

∣∣det
(

2 1
1 −1

)∣∣ dx dy = 3 dx dy

so dx dy = 1
3 du dv . Thus

J = 1
3

∫∫
R2

1
[1 + u2 + v2]2

du dv,

which is computed using polar coordinates in the uv plane

J = 1
3

∫ 2π

0

[∫ ∞

0

1
[1 + r2]2

r dr

]
dθ =

π

3
.
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Part B: Traditional Problems (7 problems, 10 points each)

B–1. If A =
(

1 4
4 1

)
, find an invertible matrix C such that D := C−1AC is a diagonal matrix.

Compute A50 .

Solution This is routine. D has the eigenvalues of A and the columns of C are the cor-
responding eigenvectors of A . Since A is a symmetric matrix, by using unit eigenvectors we
even have that C is an orthogonal matrix (so it’s inverse is easier to compute). The upshot is

λ1 = 5, λ2 = −3, v1 =
1√
2

(
1
1

)
, v2 =

1√
2

(
1

−1

)
so

D =
(

5 0
0 −3

)
C =

1√
2

(
1 1
1 −1

)
.

To compute A50 , use A = CDC−1 to find

A50 = CD50C−1 =
1
2

(
550 + (−3)50 550 − (−3)50

550 − (−3)50 550 + (−3)50

)
.

B–2. Let T : Rn → Rk be a real matrix (not necessarily square). If the nullspace of T is {0} , show
that the matrix T ∗T is invertible and positive definite.

Solution First we show that T ∗T is positive definite. For any vector x ∈ Rn

〈x, T ∗Tx〉 = 〈Tx, TX〉 = ‖Tx‖2 ≥ 0.

This also shows that 〈x, T ∗Tx〉 = 0 only when Tx = 0. Since the nullspace of T is {0} , this
occurs only when x = 0, so T ∗T is positive definite.

The above computation contains the proof that the nullspace of the square matrix T ∗T is {0} ;
thus it is invertible.

B–3. Let an be a bounded sequence of real numbers. If c > 1, show that the series
∑ an

nx

converges uniformly in the region x ≥ c .

Solution Say |an| ≤ M . If x ≥ c > 1, then∣∣∣∑ an

nx

∣∣∣ ≤ M
∑ 1

nc
.

Because c > 1, this last series converges so by the Weierstrass M-Test, the original series
converges uniformly for x ≥ c > 1.

B–4. Let γ(t) define a smooth curve that does not pass through the origin. If the point P = γ(t0)
is a point on the curve that is closest to the origin (and not an end point of the curve), show
that the position vector γ(t0) is perpendicular to the tangent vector γ′(t0).
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Solution At t0 the function h(t) := ‖γ(t)‖2 = 〈γ(t), γ(t)〉 has a local minimum. Thus

0 = h′(t0) = 2〈γ(t0), γ′(t0)〉,

so γ(t0) is orthogonal to γ′(t0). Now observe that γ′(t0) is just the tangent vector at t0 .

B–5. Let A be an n × n real symmetric matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn and corre-
sponding orthonormal eigenvectors v1 ,. . . ,vn . Show that

λ2 = min
x 6=0, x⊥v1

〈x, Ax〉
‖x‖2

.

Solution Since the eigenvectors form an orthonormal basis, we can write x = x1v1+· · ·+xnvn

for some xj . Then 〈x, Ax〉 = λ1x
2
1 + λ2x

2
2 + · · · + λnx2

n . Now x ⊥ v1 implies that x1 = 0.
Since λ2 ≤ · · · ≤ λn we find

〈x, Ax〉 ≥ λ2(x2
2 + · · ·+ x2

n) = λ2‖x‖2.

Equality occurs if x = v2 .

B–6. Let f(x) be a continuous function for 0 ≤ x ≤ 1. Compute Jn(f) := lim
n→∞

n

∫ 1

0
f(x)e−3nx dx .

Solution Observe that if x ≥ δ > 0, then ne−3nx ≤ ne−2nδ → 0, while at x = 0 the function
ne−3nx = n blows-up. Thus all the action occurs at x = 0.

Method 1: Write

Jn(f) =n

∫ 1

0
[f(x)− f(0)]e−3nx dx + n

∫ 1

0
f(0)e−3nx dx

=n

∫ 1

0
[f(x)− f(0)]e−3nx dx +

1
3
f(0).

I show that for n large the first integral in the above line can be made arbitrarily small. Given
ε > 0, pick δ do that if 0 ≤ x < δ then |f(x)− f(0)| < ε . Also, say |f(x| ≤ M for 0 ≤ x ≤ 1.
Then

n

∫ 1

0
[f(x)− f(0)]e−3nx dx ≤

∫ δ

0
+

∫ 1

δ

≤ εn

∫ δ

0
e−3nx dx + 2Mn

∫ 1

δ
e−3nx dx ≤ 1

3
ε +

1
3
2Me−3nδ.

Now let n →∞

Method 2: If f is smooth you can integrate by parts to compute the limit. More precisely,
if h ∈ C1[0, 1] then

Jn(h) = −1
3
h(x)e−3nx

1

0 +
1
3

∫ 1

0
h′(x)e−3nx dx

=
1
3

[
−h(1)e−3n + h(0) +

∫ 1

0
h′(x)e−3nx dx

]
.
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Because h ∈ C1[0, 1], h′ is bounded: |h′| ≤ M . Therefore
∣∣∣∫ 1

0 h′(x)e−3nx dx
∣∣∣ < M/3n .

Consequently

|Jn(h)− 1
3h(0)| < 1

3

[
−h(1)e−3n +

M

3n

]
→ 0.

If f is only continuous, use the Weierstrass approximation theorem to find a smooth function
h so that |f(x)− h(x)| < ε for all x ∈ [0, 1]. Then write

Jn(f)− 1
3f(0) = Jn(f − h) + [Jn(h)− 1

3h(0)] + 1
3 [h(0)− f(0)].

Since |f(x)− h(x)| < ε , then |Jn(f − h)| < ε/3 and 1
3 [h(0)− f(0)] < ε/3. Letting n →∞ we

also have Jn(h)− 1
3h(0) → 0. Thus Jn(f) → f(0)/3.

B–7. Let D be a bounded region in the plane, and B be its boundary (assumed smooth). Let

u(x, y, t) be a solution of the heat equation
∂u

∂t
= ∆u for (x, y) in D . Say that the temperature

u(x, y, t) = 0 for all points (x, y) on the boundary B .

If E(t) := 1
2

∫∫
D

u2(x, y, t) dx dy , show that dE/dt ≤ 0.

Solution
dE

dt
=

∫∫
D

uut dx dy =
∫∫

D
u∆u dx dy.

Now integrate by parts (the divergence theorem) to get∫∫
D

u∆u dx dy =
∫
B

u∇u ·N ds−
∫∫

D
|∇u|2 dx dy,

where N is the unit outer normal and ds is the element of arc length, respectively, on B . Since
u = 0 on the boundary, the integral over B is zero so

dE

dt
= −

∫∫
D
|∇u|2 dx dy ≤ 0.

4


