Math 504 December 8, 2005

Exam Solutions

DIRECTIONS This exam has two parts, the first has four short computations (5 points each) while the second has seven traditional problems (10 points each).

Part A: Short Computations (4 problems, 5 points each)

A-1. Find a real 2×2 matrix A (other than $A = \pm I$) such that $A^4 = I$.

Solution Two solutions are $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ (reflection across the *x*-axis and $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$) (reflection across the line y = x). Both of these satisfy $A^2 = I$ so clearly $A^4 = I$.

A more interesting example that does *not* satisfy $A^2 = I$ is $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ (rotation by 90 degrees).

A-2. Find a function u(x,y) satisfying $\frac{\partial u}{\partial x} - 2u = 0$ with $u(0,y) = \sin(3y)$.

Solution This is just the ODE u' - 2u = 0 with y as a parameter. The general solution (say using separation of variables) is $u(x, y) = C(y)e^{2x}$. But $\sin(3y) = u(0, y) = C(y)$. Thus $u(x, y) = \sin(3y)e^{2x}$.

A-3. Say $T(x, y, z) = x^2 + xy + y^3 - z^2$ gives the temperature at the point (x, y, z). At the point (1, 1, 1), in which direction should one move so that the temperature increases fastest?

Solution The gradient of a function is a vector pointing in the direction where the function increases most rapidly. Since

$$\nabla f(x, y, z) = (2x + y, x + 3y^2, -2z),$$

the desired direction at (1, 1, 1) is (3, 4, -2). If you prefers, you can use a unit vector in this direction.

A-4. Compute
$$J := \iint_{\mathbb{R}^2} \frac{1}{[1 + (2x + y + 1)^2 + (x - y + 3)^2]^2} dx dy$$

Solution Make the change of variables

$$u = 2x + y + 1,$$
 $v = x - y + 3.$

Then

$$du \, dv = \left| \det \left(\begin{smallmatrix} 2 & 1 \\ 1 & -1 \end{smallmatrix} \right) \right| dx \, dy = 3 \, dx \, dy$$

so $dx dy = \frac{1}{3} du dv$. Thus

$$J = \frac{1}{3} \iint_{\mathbb{R}^2} \frac{1}{[1+u^2+v^2]^2} \, du \, dv,$$

which is computed using polar coordinates in the uv plane

$$J = \frac{1}{3} \int_0^{2\pi} \left[\int_0^\infty \frac{1}{[1+r^2]^2} r \, dr \right] d\theta = \frac{\pi}{3}.$$

Part B: Traditional Problems (7 problems, 10 points each)

B-1. If $A = \begin{pmatrix} 1 & 4 \\ 4 & 1 \end{pmatrix}$, find an invertible matrix C such that $D := C^{-1}AC$ is a diagonal matrix. Compute A^{50} .

Solution This is routine. D has the eigenvalues of A and the columns of C are the corresponding eigenvectors of A. Since A is a symmetric matrix, by using unit eigenvectors we even have that C is an orthogonal matrix (so it's inverse is easier to compute). The upshot is

$$\lambda_1 = 5, \quad \lambda_2 = -3, \qquad v_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1 \end{pmatrix}, \quad v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1 \end{pmatrix}$$

$$D = \begin{pmatrix} 5 & 0\\ 0 & -2 \end{pmatrix}, \qquad C = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}, \qquad .$$

 \mathbf{SO}

$$D = \begin{pmatrix} 5 & 0\\ 0 & -3 \end{pmatrix} \qquad C = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

To compute A^{50} , use $A = CDC^{-1}$ to find

$$A^{50} = CD^{50}C^{-1} = \frac{1}{2} \begin{pmatrix} 5^{50} + (-3)^{50} & 5^{50} - (-3)^{50} \\ 5^{50} - (-3)^{50} & 5^{50} + (-3)^{50} \end{pmatrix}.$$

B-2. Let $T: \mathbb{R}^n \to \mathbb{R}^k$ be a real matrix (not necessarily square). If the nullspace of T is $\{0\}$, show that the matrix T^*T is invertible and positive definite.

Solution First we show that T^*T is positive definite. For any vector $x \in \mathbb{R}^n$

$$\langle x, T^*Tx \rangle = \langle Tx, TX \rangle = ||Tx||^2 \ge 0.$$

This also shows that $\langle x, T^*Tx \rangle = 0$ only when Tx = 0. Since the nullspace of T is $\{0\}$, this occurs only when x = 0, so T^*T is positive definite.

The above computation contains the proof that the nullspace of the square matrix T^*T is $\{0\}$; thus it is invertible.

B-3. Let a_n be a bounded sequence of real numbers. If c > 1, show that the series $\sum \frac{a_n}{n^x}$ converges uniformly in the region $x \ge c$.

Solution Say $|a_n| \leq M$. If $x \geq c > 1$, then

$$\left|\sum \frac{a_n}{n^x}\right| \le M \sum \frac{1}{n^c}$$

Because c > 1, this last series converges so by the Weierstrass M-Test, the original series converges uniformly for $x \ge c > 1$.

B-4. Let $\gamma(t)$ define a smooth curve that does not pass through the origin. If the point $\mathbf{P} = \gamma(t_0)$ is a point on the curve that is closest to the origin (and *not* an end point of the curve), show that the position vector $\gamma(t_0)$ is perpendicular to the tangent vector $\gamma'(t_0)$.

Solution At t_0 the function $h(t) := \|\gamma(t)\|^2 = \langle \gamma(t), \gamma(t) \rangle$ has a local minimum. Thus $0 = h'(t_0) = 2\langle \gamma(t_0), \gamma'(t_0) \rangle,$

so $\gamma(t_0)$ is orthogonal to $\gamma'(t_0)$. Now observe that $\gamma'(t_0)$ is just the tangent vector at t_0 .

B-5. Let A be an $n \times n$ real symmetric matrix with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ and corresponding orthonormal eigenvectors v_1, \ldots, v_n . Show that

$$\lambda_2 = \min_{x \neq 0, \ x \perp v_1} \frac{\langle x, \ Ax \rangle}{\|x\|^2}$$

Solution Since the eigenvectors form an orthonormal basis, we can write $x = x_1v_1 + \cdots + x_nv_n$ for some x_j . Then $\langle x, Ax \rangle = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \cdots + \lambda_n x_n^2$. Now $x \perp v_1$ implies that $x_1 = 0$. Since $\lambda_2 \leq \cdots \leq \lambda_n$ we find

$$\langle x, Ax \rangle \ge \lambda_2 (x_2^2 + \dots + x_n^2) = \lambda_2 ||x||^2.$$

Equality occurs if $x = v_2$.

B-6. Let f(x) be a continuous function for $0 \le x \le 1$. Compute $J_n(f) := \lim_{n \to \infty} n \int_0^1 f(x) e^{-3nx} dx$.

Solution Observe that if $x \ge \delta > 0$, then $ne^{-3nx} \le ne^{-2n\delta} \to 0$, while at x = 0 the function $ne^{-3nx} = n$ blows-up. Thus all the action occurs at x = 0.

Method 1: Write

$$J_n(f) = n \int_0^1 [f(x) - f(0)] e^{-3nx} dx + n \int_0^1 f(0) e^{-3nx} dx$$
$$= n \int_0^1 [f(x) - f(0)] e^{-3nx} dx + \frac{1}{3} f(0).$$

I show that for n large the first integral in the above line can be made arbitrarily small. Given $\epsilon > 0$, pick δ do that if $0 \le x < \delta$ then $|f(x) - f(0)| < \epsilon$. Also, say $|f(x)| \le M$ for $0 \le x \le 1$. Then

$$n\int_{0}^{1} [f(x) - f(0)]e^{-3nx} dx \le \int_{0}^{\delta} + \int_{\delta}^{1} \\ \le \epsilon n \int_{0}^{\delta} e^{-3nx} dx + 2Mn \int_{\delta}^{1} e^{-3nx} dx \le \frac{1}{3}\epsilon + \frac{1}{3}2Me^{-3n\delta}.$$

Now let $n \to \infty$

METHOD 2: If f is smooth you can integrate by parts to compute the limit. More precisely, if $h \in C^{1}[0, 1]$ then

$$J_n(h) = -\frac{1}{3}h(x)e^{-3nx}\Big|_0^1 + \frac{1}{3}\int_0^1 h'(x)e^{-3nx} dx$$
$$= \frac{1}{3}\left[-h(1)e^{-3n} + h(0) + \int_0^1 h'(x)e^{-3nx} dx\right]$$

Because $h \in C^1[0,1]$, h' is bounded: $|h'| \leq M$. Therefore $\left| \int_0^1 h'(x) e^{-3nx} dx \right| < M/3n$. Consequently

$$|J_n(h) - \frac{1}{3}h(0)| < \frac{1}{3}\left[-h(1)e^{-3n} + \frac{M}{3n}\right] \to 0.$$

If f is only continuous, use the Weierstrass approximation theorem to find a smooth function h so that $|f(x) - h(x)| < \epsilon$ for all $x \in [0, 1]$. Then write

$$J_n(f) - \frac{1}{3}f(0) = J_n(f-h) + [J_n(h) - \frac{1}{3}h(0)] + \frac{1}{3}[h(0) - f(0)].$$

Since $|f(x) - h(x)| < \epsilon$, then $|J_n(f - h)| < \epsilon/3$ and $\frac{1}{3}[h(0) - f(0)] < \epsilon/3$. Letting $n \to \infty$ we also have $J_n(h) - \frac{1}{3}h(0) \to 0$. Thus $J_n(f) \to f(0)/3$.

- B-7. Let \mathcal{D} be a bounded region in the plane, and \mathcal{B} be its boundary (assumed smooth). Let u(x, y, t) be a solution of the heat equation $\frac{\partial u}{\partial t} = \Delta u$ for (x, y) in \mathcal{D} . Say that the temperature u(x, y, t) = 0 for all points (x, y) on the boundary \mathcal{B} .
 - If $E(t) := \frac{1}{2} \iint_{\mathcal{D}} u^2(x, y, t) \, dx \, dy$, show that $dE/dt \le 0$. Solution

$$\frac{dE}{dt} = \iint_{\mathcal{D}} uu_t \, dx \, dy = \iint_{\mathcal{D}} u\Delta u \, dx \, dy.$$

Now integrate by parts (the divergence theorem) to get

$$\iint_{\mathcal{D}} u\Delta u \, dx \, dy = \int_{\mathcal{B}} u\nabla u \cdot N \, ds - \iint_{\mathcal{D}} |\nabla u|^2 \, dx \, dy,$$

where N is the unit outer normal and ds is the element of arc length, respectively, on \mathcal{B} . Since u = 0 on the boundary, the integral over \mathcal{B} is zero so

$$\frac{dE}{dt} = -\iint_{\mathcal{D}} |\nabla u|^2 \, dx \, dy \le 0.$$