Directions This exam has two parts, the first has four short computations (5 points each) while the second has seven traditional problems (10 points each).

Part A: Short Computations (4 problems, 5 points each)
A-1. Find a real 2×2 matrix A (other than $A= \pm I)$ such that $A^{4}=I$.
Solution Two solutions are $A=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$ (reflection across the x-axis and $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ (reflection across the line $y=x)$. Both of these satisfy $A^{2}=I$ so clearly $A^{4}=I$.
A more interesting example that does not satisfy $A^{2}=I$ is $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ (rotation by 90 degrees).

A-2. Find a function $u(x, y)$ satisfying $\quad \frac{\partial u}{\partial x}-2 u=0 \quad$ with $\quad u(0, y)=\sin (3 y)$.
Solution This is just the ODE $u^{\prime}-2 u=0$ with y as a parameter. The general solution (say using separation of variables) is $u(x, y)=C(y) e^{2 x}$. But $\sin (3 y)=u(0, y)=C(y)$. Thus $u(x, y)=\sin (3 y) e^{2 x}$.

A-3. Say $T(x, y, z)=x^{2}+x y+y^{3}-z^{2}$ gives the temperature at the point (x, y, z). At the point $(1,1,1)$, in which direction should one move so that the temperature increases fastest?
Solution The gradient of a function is a vector pointing in the direction where the function increases most rapidly. Since

$$
\nabla f(x, y, z)=\left(2 x+y, x+3 y^{2},-2 z\right)
$$

the desired direction at $(1,1,1)$ is $(3,4,-2)$. If you prefers, you can use a unit vector in this direction.

A-4. Compute $J:=\iint_{\mathbb{R}^{2}} \frac{1}{\left[1+(2 x+y+1)^{2}+(x-y+3)^{2}\right]^{2}} d x d y$.
Solution Make the change of variables

$$
u=2 x+y+1, \quad v=x-y+3
$$

Then

$$
d u d v=\left|\operatorname{det}\left(\begin{array}{rr}
2 & 1 \\
1 & -1
\end{array}\right)\right| d x d y=3 d x d y
$$

so $d x d y=\frac{1}{3} d u d v$. Thus

$$
J=\frac{1}{3} \iint_{\mathbb{R}^{2}} \frac{1}{\left[1+u^{2}+v^{2}\right]^{2}} d u d v
$$

which is computed using polar coordinates in the $u v$ plane

$$
J=\frac{1}{3} \int_{0}^{2 \pi}\left[\int_{0}^{\infty} \frac{1}{\left[1+r^{2}\right]^{2}} r d r\right] d \theta=\frac{\pi}{3}
$$

Part B: Traditional Problems (7 problems, 10 points each)
$\mathrm{B}-1$. If $A=\left(\begin{array}{ll}1 & 4 \\ 4 & 1\end{array}\right)$, find an invertible matrix C such that $D:=C^{-1} A C$ is a diagonal matrix. Compute A^{50}.
Solution This is routine. D has the eigenvalues of A and the columns of C are the corresponding eigenvectors of A. Since A is a symmetric matrix, by using unit eigenvectors we even have that C is an orthogonal matrix (so it's inverse is easier to compute). The upshot is

$$
\lambda_{1}=5, \quad \lambda_{2}=-3, \quad v_{1}=\frac{1}{\sqrt{2}}\binom{1}{1}, \quad v_{2}=\frac{1}{\sqrt{2}}\binom{1}{-1}
$$

so

$$
D=\left(\begin{array}{rr}
5 & 0 \\
0 & -3
\end{array}\right) \quad C=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)
$$

To compute A^{50}, use $A=C D C^{-1}$ to find

$$
A^{50}=C D^{50} C^{-1}=\frac{1}{2}\left(\begin{array}{ll}
5^{50}+(-3)^{50} & 5^{50}-(-3)^{50} \\
5^{50}-(-3)^{50} & 5^{50}+(-3)^{50}
\end{array}\right)
$$

B-2. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ be a real matrix (not necessarily square). If the nullspace of T is $\{0\}$, show that the matrix $T^{*} T$ is invertible and positive definite.
Solution First we show that $T^{*} T$ is positive definite. For any vector $x \in \mathbb{R}^{n}$

$$
\left\langle x, T^{*} T x\right\rangle=\langle T x, T X\rangle=\|T x\|^{2} \geq 0
$$

This also shows that $\left\langle x, T^{*} T x\right\rangle=0$ only when $T x=0$. Since the nullspace of T is $\{0\}$, this occurs only when $x=0$, so $T^{*} T$ is positive definite.
The above computation contains the proof that the nullspace of the square matrix $T^{*} T$ is $\{0\}$; thus it is invertible.
$\mathrm{B}-3$. Let a_{n} be a bounded sequence of real numbers. If $c>1$, show that the series $\sum \frac{a_{n}}{n^{x}}$ converges uniformly in the region $x \geq c$.
Solution Say $\left|a_{n}\right| \leq M$. If $x \geq c>1$, then

$$
\left|\sum \frac{a_{n}}{n^{x}}\right| \leq M \sum \frac{1}{n^{c}}
$$

Because $c>1$, this last series converges so by the Weierstrass M-Test, the original series converges uniformly for $x \geq c>1$.

B-4. Let $\gamma(t)$ define a smooth curve that does not pass through the origin. If the point $\mathbf{P}=\gamma\left(t_{0}\right)$ is a point on the curve that is closest to the origin (and not an end point of the curve), show that the position vector $\gamma\left(t_{0}\right)$ is perpendicular to the tangent vector $\gamma^{\prime}\left(t_{0}\right)$.

Solution At t_{0} the function $h(t):=\|\gamma(t)\|^{2}=\langle\gamma(t), \gamma(t)\rangle$ has a local minimum. Thus

$$
0=h^{\prime}\left(t_{0}\right)=2\left\langle\gamma\left(t_{0}\right), \gamma^{\prime}\left(t_{0}\right)\right\rangle
$$

so $\gamma\left(t_{0}\right)$ is orthogonal to $\gamma^{\prime}\left(t_{0}\right)$. Now observe that $\gamma^{\prime}\left(t_{0}\right)$ is just the tangent vector at t_{0}.

B-5. Let A be an $n \times n$ real symmetric matrix with eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ and corresponding orthonormal eigenvectors v_{1}, \ldots, v_{n}. Show that

$$
\lambda_{2}=\min _{x \neq 0, x \perp v_{1}} \frac{\langle x, A x\rangle}{\|x\|^{2}}
$$

Solution Since the eigenvectors form an orthonormal basis, we can write $x=x_{1} v_{1}+\cdots+x_{n} v_{n}$ for some x_{j}. Then $\langle x, A x\rangle=\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}+\cdots+\lambda_{n} x_{n}^{2}$. Now $x \perp v_{1}$ implies that $x_{1}=0$. Since $\lambda_{2} \leq \cdots \leq \lambda_{n}$ we find

$$
\langle x, A x\rangle \geq \lambda_{2}\left(x_{2}^{2}+\cdots+x_{n}^{2}\right)=\lambda_{2}\|x\|^{2} .
$$

Equality occurs if $x=v_{2}$.

B-6. Let $f(x)$ be a continuous function for $0 \leq x \leq 1$. Compute $J_{n}(f):=\lim _{n \rightarrow \infty} n \int_{0}^{1} f(x) e^{-3 n x} d x$.
Solution Observe that if $x \geq \delta>0$, then $n e^{-3 n x} \leq n e^{-2 n \delta} \rightarrow 0$, while at $x=0$ the function $n e^{-3 n x}=n$ blows-up. Thus all the action occurs at $x=0$.

Method 1: Write

$$
\begin{aligned}
J_{n}(f) & =n \int_{0}^{1}[f(x)-f(0)] e^{-3 n x} d x+n \int_{0}^{1} f(0) e^{-3 n x} d x \\
& =n \int_{0}^{1}[f(x)-f(0)] e^{-3 n x} d x+\frac{1}{3} f(0)
\end{aligned}
$$

I show that for n large the first integral in the above line can be made arbitrarily small. Given $\epsilon>0$, pick δ do that if $0 \leq x<\delta$ then $|f(x)-f(0)|<\epsilon$. Also, say $\mid f(x \mid \leq M$ for $0 \leq x \leq 1$. Then

$$
\begin{aligned}
n \int_{0}^{1}[f(x)-f(0)] e^{-3 n x} d x & \leq \int_{0}^{\delta}+\int_{\delta}^{1} \\
& \leq \epsilon n \int_{0}^{\delta} e^{-3 n x} d x+2 M n \int_{\delta}^{1} e^{-3 n x} d x \leq \frac{1}{3} \epsilon+\frac{1}{3} 2 M e^{-3 n \delta}
\end{aligned}
$$

Now let $n \rightarrow \infty$
Method 2: If f is smooth you can integrate by parts to compute the limit. More precisely, if $h \in C^{1}[0,1]$ then

$$
\begin{aligned}
J_{n}(h) & =-\left.\frac{1}{3} h(x) e^{-3 n x}\right|_{0} ^{1}+\frac{1}{3} \int_{0}^{1} h^{\prime}(x) e^{-3 n x} d x \\
& =\frac{1}{3}\left[-h(1) e^{-3 n}+h(0)+\int_{0}^{1} h^{\prime}(x) e^{-3 n x} d x\right]
\end{aligned}
$$

Because $h \in C^{1}[0,1], h^{\prime}$ is bounded: $\left|h^{\prime}\right| \leq M$. Therefore $\left|\int_{0}^{1} h^{\prime}(x) e^{-3 n x} d x\right|<M / 3 n$. Consequently

$$
\left|J_{n}(h)-\frac{1}{3} h(0)\right|<\frac{1}{3}\left[-h(1) e^{-3 n}+\frac{M}{3 n}\right] \rightarrow 0
$$

If f is only continuous, use the Weierstrass approximation theorem to find a smooth function h so that $|f(x)-h(x)|<\epsilon$ for all $x \in[0,1]$. Then write

$$
J_{n}(f)-\frac{1}{3} f(0)=J_{n}(f-h)+\left[J_{n}(h)-\frac{1}{3} h(0)\right]+\frac{1}{3}[h(0)-f(0)]
$$

Since $|f(x)-h(x)|<\epsilon$, then $\left|J_{n}(f-h)\right|<\epsilon / 3$ and $\frac{1}{3}[h(0)-f(0)]<\epsilon / 3$. Letting $n \rightarrow \infty$ we also have $J_{n}(h)-\frac{1}{3} h(0) \rightarrow 0$. Thus $J_{n}(f) \rightarrow f(0) / 3$.
$\mathrm{B}-7$. Let \mathcal{D} be a bounded region in the plane, and \mathcal{B} be its boundary (assumed smooth). Let $u(x, y, t)$ be a solution of the heat equation $\frac{\partial u}{\partial t}=\Delta u$ for (x, y) in \mathcal{D}. Say that the temperature $u(x, y, t)=0$ for all points (x, y) on the boundary \mathcal{B}.
If $E(t):=\frac{1}{2} \iint_{\mathcal{D}} u^{2}(x, y, t) d x d y$, show that $d E / d t \leq 0$.

Solution

$$
\frac{d E}{d t}=\iint_{\mathcal{D}} u u_{t} d x d y=\iint_{\mathcal{D}} u \Delta u d x d y
$$

Now integrate by parts (the divergence theorem) to get

$$
\iint_{\mathcal{D}} u \Delta u d x d y=\int_{\mathcal{B}} u \nabla u \cdot N d s-\iint_{\mathcal{D}}|\nabla u|^{2} d x d y
$$

where N is the unit outer normal and $d s$ is the element of arc length, respectively, on \mathcal{B}. Since $u=0$ on the boundary, the integral over \mathcal{B} is zero so

$$
\frac{d E}{d t}=-\iint_{\mathcal{D}}|\nabla u|^{2} d x d y \leq 0
$$

