Math 504 December 8, 2005

DIRECTIONS This exam has two parts, the first has four short computations (5 points each) while the second has seven traditional problems (10 points each).

Part A: Short Computations (4 problems, 5 points each)

A–1. Find a real 2×2 matrix A (other than $A = \pm I$) such that $A^4 = I$.

A-2. Find a function u(x,y) satisfying $\frac{\partial u}{\partial x} - 2u = 0$ with $u(0,y) = \sin(3y)$.

A-3. Say $T(x, y, z) = x^2 + xy + y^3 - z^2$ gives the temperature at the point (x, y, z). At the point (1, 1, 1), in which direction should one move so that the temperature increases fastest?

A-4. Compute
$$J := \iint_{\mathbb{R}^2} \frac{1}{[1 + (2x + y + 1)^2 + (x - y + 3)^2]^2} dx dy.$$

Part B: Traditional Problems (7 problems, 10 points each)

- B-1. If $A = \begin{pmatrix} 1 & 4 \\ 4 & 1 \end{pmatrix}$, find an invertible matrix C such that $D := C^{-1}AC$ is a diagonal matrix. Compute A^{50} .
- B-2. Let $T : \mathbb{R}^n \to \mathbb{R}^k$ be a real matrix (not necessarily square). If the nullspace of T is $\{0\}$, show that the matrix T^*T is invertible and positive definite.
- B-3. Let a_n be a bounded sequence of real numbers. If c > 1, show that the series $\sum \frac{a_n}{n^x}$ converges uniformly in the region $x \ge c$.
- B-4. Let $\gamma(t)$ define a smooth curve that does not pass through the origin. If the point $\mathbf{P} = \gamma(t_0)$ is a point on the curve that is closest to the origin (and *not* an end point of the curve), show that the position vector $\gamma(t_0)$ is perpendicular to the tangent vector $\gamma'(t_0)$.
- B-5. Let A be an $n \times n$ real symmetric matrix with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ and corresponding orthonormal eigenvectors v_1, \ldots, v_n . Show that

$$\lambda_2 = \min_{x \neq 0, \ x \perp v_1} \frac{\langle x, \ Ax \rangle}{\|x\|^2}.$$

B-6. Let f(x) be a continuous function for $0 \le x \le 1$. Compute $\lim_{n \to \infty} n \int_0^1 f(x) e^{-3nx} dx$.

B-7. Let \mathcal{D} be a bounded region in the plane, and \mathcal{B} be its boundary (assumed smooth). Let u(x, y, t) be a solution of the heat equation $\frac{\partial u}{\partial t} = \Delta u$ for (x, y) in \mathcal{D} . Say that the temperature u(x, y, t) = 0 for all points (x, y) on the boundary \mathcal{B} .

If
$$E(t) := \frac{1}{2} \iint_{\mathcal{D}} u^2(x, y, t) \, dx \, dy$$
, show that $dE/dt \le 0$.

More Problems The following problems were in the first draft of this exam but were deleted since they made the exam way too long.

M-1. Let $p(x) := \left(\frac{d}{dx}\right)^3 (1-x^2)^3$. Show that p is a polynomial of degree 3 and that it has 3 real distinct zeroes, all lying in the interval -1 < x < 1.

M-2. Let
$$v(x,t) := \int_{x-2t}^{x+2t} g(s) \, ds$$
, where g is a continuous function. Compute $\frac{\partial v}{\partial t}$.

M-3. Let $L: \mathbb{R}^n \to \mathbb{R}^k$ be a linear map. Show that $\dim \ker(L) - \dim \ker(L^*) = n - k$.

- M-4. Let v(x) be a smooth real-valued function for $0 \le x \le 1$. If v(0) = v(1) = 0 and v''(x) > 0 for all $0 \le x \le 1$, show that $v(x) \le 0$ for all $0 \le x \le 1$.
- M-5. Given any points (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , (x_4, y_4) in the plane \mathbb{R}^2 with the x_i 's distinct, show there is a unique cubic polynomial p(x) with the properties that $p(x_i) = y_i$.
- M-6. Let y = f(x, u) and z = g(x, u) be smooth functions with, say, $f(x_0, u_0) = y_0$ and $g(x_0, u_0) = z_0$.
 - a) Under what condition(s) can one eliminate x from these equations to express z as z = H(u, y) as a smooth function of u and y near $u = u_0, y = y_0$?
 - b) If $f_x(x_0, u_0) = 1$, $f_u(x_0, u_0) = -2$, $g_x(x_0, u_0) = -3$, and $g_u(x_0, u_0) = 4$, compute $\frac{\partial z}{\partial u}$ in terms of the derivatives of f and g.
- M-7. Let h(x, y) and f(x) be continuous for $0 \le x \le 1$, $0 \le y \le 1$. Let $u_0(x) \equiv 0$ and define $u_k(x), k = 1, 2, \ldots$, recursively by the rule

$$u_{k+1}(x) = f(x) + \int_0^1 h(x, y) u_k(y) \, dy.$$

If $\max|h(x,y)| \le c < 1$ show that the $u_k(x)$ converge uniformly for $0 \le x \le 1$ to a continuous function u(x) that satisfies

$$u(x) = f(x) + \int_0^c h(x, y)u(y) \, dy.$$

M-8. Let $f(x) \in C^{\infty}(\mathbb{R})$ be a real valued function with f(0) = 0. Show there is a $g(x) \in C^{\infty}(\mathbb{R})$ such that f(x) = xg(x).