Periodic Solutions of ODEs

In class we discussed some aspects of periodic solutions of ordinary differential equations. From the questions I received, my presentation was not so clear. Here I'll give a detailed formal proof for the first order equation

$$
\begin{equation*}
u^{\prime}(x)+a(x) u(x)=f(x) \tag{1}
\end{equation*}
$$

where both $a(x)$ and $f(x)$ are periodic with period P, so, for instance, $a(x+P)=a(x)$ for all x.
Theorem 1 If $u(x)$ is a solution of (1) with $u(P)=u(0)$, then u is periodic with period P, that is, $u(x+P)=u(x)$ for all x.

Proof The key ingredient is the uniqueness assertion:
If $u(x)$ and $v(x)$ both satisfy (1) with $u(0)=v(0)$, then $u(x)=v(x)$ for all x.
We take this as a known fact.
Since u is a solution of (1) for all x. then

$$
u^{\prime \prime}(x+P)+a(x+P) u(x+P)=f(x+P) \text { for all } \quad x .
$$

Therefore, because both a and f are periodic with period P :

$$
u^{\prime \prime}(x+P)+a(x) u(x+P)=f(x) \quad \text { for all } \quad x .
$$

Thus, if we let $v(x):=u(x+P)$, then

$$
v^{\prime}(x)+a(x) v(x)=f(x) .
$$

But if $u(P)=u(0)$, then $v(0)=u(0)$. Therefore by the uniqueness assertion, $v(x)=u(x)$ for all x, that is, $u(x+P)=u(x)$ for all x.

The related assertion for a solution of a second order equation is essentially identical except there we need to assume that both $u(0)=u(P)$ and $u^{\prime}(0)=u^{\prime}(P)$, since the corresponding uniqueness assertion for second order equations requires that.

