Many Coupled Oscillators

A Vibrating String

Say we have n particles with the same mass m equally spaced on a string having tension τ. Let y_{k} denote the vertical displacement if the $\mathrm{k}^{\text {th }}$ mass. Assume the ends of the string are fixed; this is the same as having additional particles at the ends, but with zero displacement: $y_{0}=0$ and $y_{n+1}=0$. Let ϕ_{k} be the angle the segment of the string between the $\mathrm{k}^{\text {th }}$ and $\mathrm{k}+1^{s t}$ particle makes with the horizontal. Then Newton's second law of motion applied to the $\mathrm{k}^{\text {th }}$ mass asserts that

$$
\begin{equation*}
m \ddot{y}_{k}=\tau \sin \phi_{k}-\tau \sin \phi_{k-1}, \quad k=1, \ldots, n . \tag{1}
\end{equation*}
$$

If the particles have horizontal separation h, then $\tan \phi_{k}=\left(y_{k+1}-y_{k}\right) / h$. For the case of small vibrations we assume that $\phi_{k} \approx 0$; then $\sin \phi_{k} \approx \tan \phi_{k}=\left(y_{k+1}-y_{k}\right) / h$ so we can rewrite (1) as

$$
\begin{equation*}
\ddot{y}_{k}=p^{2}\left(y_{k+1}-2 y_{k}+y_{k-1}\right), \quad k=1, \ldots, n, \tag{2}
\end{equation*}
$$

where $p^{2}=\tau / m h$. This is a system of second order linear constant coefficient differential equations with the boundary conditions $y_{0}(t)=0$ and $y_{n+1}(t)=0$. As usual, one seeks special solutions of the form $y_{k}(t)=v_{k} e^{\alpha t}$. Substituting this into (2) we find

$$
\alpha^{2} v_{k}=p^{2}\left(v_{k+1}-2 v_{k}+v_{k-1}\right), \quad k=1, \ldots, n,
$$

that is, α^{2} is an eigenvalue of the matrix $p^{2}(T-2 I)$, where

$$
T=\left(\begin{array}{cccccccc}
0 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 \tag{3}\\
1 & 0 & 1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \\
0 & 0 & 0 & 0 & \ldots & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & \ldots & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & \ldots & 0 & 1 & 0
\end{array}\right)
$$

From the work in the next section (see (9)), we conclude that

$$
\alpha_{k}^{2}=-2 p^{2}\left(1-\cos \frac{k \pi}{n+1}\right)=-4 p^{2} \sin ^{2} \frac{k \pi}{2(n+1)}, \quad k=1, \ldots, n,
$$

so

$$
\alpha_{k}=2 i p \sin \frac{k \pi}{2(n+1)}, \quad k=1, \ldots, n .
$$

The corresponding eigenvectors V_{k} are the same as for T (see (10)). Thus the special solutions are

$$
Y_{k}(t)=V_{k} e^{2 i p t \sin \frac{k \pi}{2(n+1)}}, \quad k=1, \ldots, n,
$$

where $Y(t)=\left(y_{1}(t), \ldots, y_{n}(t)\right)$.

A Special Tridiagonal Matrix

We investigate the simple $n \times n$ real tridiagonal matrix:

$$
M=\left(\begin{array}{cccccccc}
\alpha & \beta & 0 & 0 & \ldots & 0 & 0 & 0 \\
\beta & \alpha & \beta & 0 & \ldots & 0 & 0 & 0 \\
0 & \beta & \alpha & \beta & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & \alpha & \beta & 0 \\
0 & 0 & 0 & 0 & \ldots & \beta & \alpha & \beta \\
0 & 0 & 0 & 0 & \ldots & 0 & \beta & \alpha
\end{array}\right) .=\alpha I+\beta T,
$$

where T is defined by (3). This matrix arises in many applications, such as n coupled harmonic oscillators (see the previous section) and solving the Laplace equation numerically. Clearly M and T have the same eigenvectors and their respective eigenvalues are related by $\mu=\alpha+\beta \lambda$. Thus, to understand M it is sufficient to work with the simpler matrix T.

Eigenvalues and Eigenvectors of T

Usually one first finds the eigenvalues and then the eigenvectors of a matrix. For T, it is a bit simpler first to find the eigenvectors. Let λ be an eigenvalue (necessarily real) and $V=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a corresponding eigenvector. It will be convenient to write $\lambda=2 c$. Then

$$
\begin{align*}
0=(T-\lambda I) V & =\left(\begin{array}{cccccccc}
-2 c & 1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
1 & -2 c & 1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & -2 c & 1 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & -2 c & 1 & 0 \\
0 & 0 & 0 & 0 & \ldots & 1 & -2 c & 1 \\
0 & 0 & 0 & 0 & \ldots & 0 & 1 & -2 c
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots \\
v_{n-2} \\
v_{n-1} \\
v_{n}
\end{array}\right) \\
& =\left(\begin{array}{c}
-2 c v_{1}+v_{2} \\
v_{1}-2 c v_{2}+v_{3} \\
\vdots \\
v_{k-1}-2 c v_{k}+v_{k+1} \\
\vdots \\
v_{n-2}-2 c v_{n-1}+v_{n} \\
v_{n-1}-2 c v_{n}
\end{array}\right) \tag{4}
\end{align*}
$$

Except for the first and last equation, these have the form

$$
\begin{equation*}
v_{k-1}-2 c v_{k}+v_{k+1}=0 \tag{5}
\end{equation*}
$$

We can also bring the first and last equations into this same form by introducing new artificial variables v_{0} and v_{n+1}, setting their values as zero: $v_{0}=0, v_{n+1}=0$.

The result (5) is a second order linear difference equation with constant coefficients along with the boundary conditions $v_{0}=0$, and $v_{n+1}=0$. As usual for such equations one seeks a solution with the form $v_{k}=r^{k}$. Equation (5) then gives $1-2 c r+r^{2}=0$ whose roots are

$$
r_{ \pm}=c \pm \sqrt{c^{2}-1}
$$

Note also

$$
\begin{equation*}
2 c=r+r^{-1} \quad \text { and } \quad r_{+} r_{-}=1 \tag{6}
\end{equation*}
$$

Case 1: $c \neq \pm 1$. In this case the two roots $r_{ \pm}$are distinct. Let $r:=r_{+}=c+\sqrt{c^{2}-1}$. Since $r_{-}=c-\sqrt{c^{2}-1}=1 / r$, we deduce that the general solution of (4) is

$$
\begin{equation*}
v_{k}=A r^{k}+B r^{-k}, \quad k=2, \ldots, n-1 \tag{7}
\end{equation*}
$$

for some constants A and B which.
The first boundary condition, $v_{0}=0$, gives $A+B=0$, so

$$
\begin{equation*}
v_{k}=A\left(r^{k}-r^{-k}\right), \quad k=1, \ldots, n-1 . \tag{8}
\end{equation*}
$$

Since for a non-trivial solution we need $A \neq 0$, the second boundary condition, $v_{n+1}=0$, implies

$$
r^{n+1}-r^{-(n+1)}=0, \quad \text { so } \quad r^{2(n+1)}=1
$$

In particular, $|r|=1$. Using (6), this gives $2|c| \leq|r|+|r|^{-1}=2$. Thus $|c| \leq 1$. In fact, $|c|<1$ because we are assuming that $c \neq \pm 1$.
Case 2: $c= \pm 1$. Then $r=c$ and the general solution of (4) is now

$$
v_{k}=(A+B k) c^{k} .
$$

The boundary condition $v_{0}=0$ implies that $A=0$. The other boundary condition then gives $0=v_{n+1}=B(n+1) c^{n+1}$. This is satisfied only in the trivial case $B=0$. Consequently the equations (4) have no non-trivial solution for $c= \pm 1$.

It remains to rewrite our results in a simpler way. We are in Case 1 so $|r|=1$. Thus $r=e^{i \theta}, c=\cos \theta$, and $1=r^{2(n+1)}=e^{2 i(n+1) \theta}$. Consequently $2(n+1) \theta=2 k \pi$ for some $1 \leq k \leq n$ (we exclude $k=0$ and $k=n+1$ because we know that $c \neq \pm 1$, so $r \neq \pm 1$). Normalizing the eigenvectors V by the choice $A=1 / 2 i$, we summarize as follows:

Theorem 1 The $n \times n$ matrix T has the eigenvalues

$$
\begin{equation*}
\lambda_{k}=2 c=2 \cos \theta=2 \cos \frac{k \pi}{n+1}, \quad 1 \leq k \leq n \tag{9}
\end{equation*}
$$

and corresponding eigenvectors

$$
\begin{equation*}
V_{k}=\left(\sin \frac{k \pi}{n+1}, \sin \frac{2 k \pi}{n+1}, \ldots, \sin \frac{n k \pi}{n+1}\right) \tag{10}
\end{equation*}
$$

REMARK 1. If $n=2 k+1$ is odd, then the middle eigenvalue is zero because $(k+1) \pi /(n+$ $1)=(k+1) \pi / 2(k+1)=\pi / 2$.
REMARK 2. Since $2 a b=a^{2}+b^{2}-(a-b)^{2} \leq a^{2}+b^{2}$ with equality only if $a=b$, we see that for any $x \in \mathbb{R}^{n}$

$$
\langle x, T x\rangle=2\left(x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{n-1} x_{n}\right) \leq x_{1}^{2}+2\left(x_{2}^{2}+\cdots+x_{n-1}^{2}\right)+x_{n}^{2} \leq 2\|x\|^{2}
$$

with equality only if $x=0$. Similarly $\langle x, T x\rangle \geq-2\|x\|^{2}$. Thus, the eigenvalues of T are in the interval $-2<\lambda<2$. Although we obtained more precise information above, it is useful to observe that we could have deduced this so easily.
REmARK 3. Gershgorin's circle theorem is also a simple way to get information about the eigenvalues of a square (complex) matrix $A=\left(a_{i j}\right)$. Let D_{i} be the disk whose center is at $a_{i i}$ and radius is $R_{i}=\sum_{j \neq i}\left|a_{i j}\right|$, so

$$
\left|\lambda-a_{j j}\right| \leq R_{j} .
$$

These are the Gershgorin disks.
Theorem 2 (Gershgorin) Each eigenvalues of A lies in at least one of these Gershgorin discs.

Proof: Say $A x=\lambda x$ and say $\left|x_{i}\right|=\max _{j}\left|x_{j}\right|$. The $i^{\text {th }}$ component of $A x=\lambda x$ is

$$
\left(\lambda-a_{i i}\right) x_{i}=\sum_{j \neq i} a_{i j} x_{j}
$$

so

$$
\left|\left(\lambda-a_{i i}\right) x_{i}\right| \leq \sum_{j \neq i}\left|a_{i j}\right|\left|x_{j}\right| \leq R_{i}\left|x_{i}\right| .
$$

That is, $\left|\lambda-a_{i i}\right| \leq R_{i}$, as claimed.
By Gershgorin's theorem, we observed immediately that all of the eigenvalues of T satisfy $|\lambda| \leq 2$.

DETERMINANT OF $T-\lambda I$

We use recursion on n, the size of the $n \times n$ matrix T. It will be convenient to build on (4) and let $D_{n}=\operatorname{det}(T-\lambda I)$. As before, let $\lambda=2 c$. Then, expanding by minors using the first column of (4) we obtain the formula

$$
\begin{equation*}
D_{n}=-2 c D_{n-1}-D_{n-2} \quad n=3,4, \ldots \tag{11}
\end{equation*}
$$

Since $D_{1}=-2 c$ and $D_{2}=4 c^{2}-1$, we can use (11) to define $D_{0}:=1$. The relation (11) is, except for the sign of c, is identical to (5). The solution for $c \neq \pm 1$ is thus

$$
\begin{equation*}
D_{k}=A s^{k}+B s^{-k}, \quad k=0,1, \ldots \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
-2 c=s+s^{-1} \quad \text { and } \quad s=-c+\sqrt{c^{2}-1} \tag{13}
\end{equation*}
$$

This time we determine the constants A, B from the initial conditions $D_{0}=1$ and $D_{1}=$ $-2 c$. The result is

$$
D_{k}= \begin{cases}\frac{1}{2 \sqrt{c^{2}-1}}\left(s^{k+1}-s^{-(k+1)}\right) & \text { if } \tag{14}\\ c \neq \pm 1 \\ (-c)^{k}(k+1) & \text { if } \\ c= \pm 1\end{cases}
$$

For many purposes it is useful to rewrite this.
Case 1: $|c|<1$. Then $s=-c+i \sqrt{1-c^{2}}$ has $|s|=1$ so $s=e^{i \alpha}$ and $c=-\cos \alpha$ for some $0<\alpha<\pi$. Therefore from (14),

$$
\begin{equation*}
D_{k}=\frac{\sin (k+1) \alpha}{\sin \alpha} \tag{15}
\end{equation*}
$$

Case 2: $c>1$. Write $c=\cosh \beta$ for some $\beta>0$. Since $-e^{\beta}-e^{-\beta}=-2 c=s+s^{-1}$, write $s=-e^{\beta}$. Then from (14),

$$
\begin{equation*}
D_{k}=(-1)^{k} \frac{\sinh (k+1) \beta}{\sinh \beta}, \tag{16}
\end{equation*}
$$

where we chose the sign in $\sqrt{c^{2}-1}=-\sinh \beta$ so that $D_{0}=1$.
Case 3: $c<-1$. Write $c=-\cosh \beta$ for some $\beta>0$. Since $e^{t}+e^{-t}=-2 c=s+s^{-1}$, write $s=e^{\beta}$. Then from (14),

$$
\begin{equation*}
D_{k}=\frac{\sinh (k+1) \beta}{\sinh \beta} \tag{17}
\end{equation*}
$$

where we chose the sign in $\sqrt{c^{2}-1}=+\sinh t$ so that $D_{0}=1$.
Note that as $t \rightarrow 0$ in (15)-(17), that is, as $c \rightarrow \pm 1$. these formulas agree with the case $c= \pm 1$ in (14).

