
Many Coupled Oscillators

A VIBRATING STRING

Say we have n particles with the same mass m equally spaced on a string having
tension τ . Let yk denote the vertical displacement if the k th mass. Assume the ends of the
string are fixed; this is the same as having additional particles at the ends, but with zero
displacement: y0 = 0 and yn+1 = 0. Let φk be the angle the segment of the string between
the k th and k+1st particle makes with the horizontal. Then Newton’s second law of motion
applied to the k th mass asserts that

mÿk = τsinφk− τsinφk−1, k = 1, . . . ,n. (1)

If the particles have horizontal separation h , then tanφk = (yk+1− yk)/h . For the case
of small vibrations we assume that φk ≈ 0; then sinφk ≈ tanφk = (yk+1− yk)/h so we can
rewrite (1) as

ÿk = p2(yk+1−2yk + yk−1), k = 1, . . . ,n, (2)

where p2 = τ/mh . This is a system of second order linear constant coefficient differential
equations with the boundary conditions y0(t) = 0 and yn+1(t) = 0. As usual, one seeks
special solutions of the form yk(t) = vkeαt . Substituting this into (2) we find

α
2vk = p2(vk+1−2vk + vk−1), k = 1, . . . ,n,

that is, α2 is an eigenvalue of the matrix p2(T −2I) , where

T =



0 1 0 0 . . . 0 0 0
1 0 1 0 . . . 0 0 0
0 1 0 1 . . . 0 0 0
...

...
...
... . . . ...

...
...

0 0 0 0 . . . 0 1 0
0 0 0 0 . . . 1 0 1
0 0 0 0 . . . 0 1 0


. (3)

From the work in the next section (see (9)), we conclude that

α
2
k =−2p2(1− cos kπ

n+1) =−4p2 sin2 kπ

2(n+1) , k = 1, . . . ,n,

so
αk = 2ipsin kπ

2(n+1) , k = 1, . . . ,n.

The corresponding eigenvectors Vk are the same as for T (see (10)). Thus the special
solutions are

Yk(t) =Vke2ipt sin kπ

2(n+1) , k = 1, . . . ,n,

where Y (t) = (y1(t), . . . ,yn(t)) .
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A SPECIAL TRIDIAGONAL MATRIX

We investigate the simple n×n real tridiagonal matrix:

M =



α β 0 0 . . . 0 0 0
β α β 0 . . . 0 0 0
0 β α β . . . 0 0 0
...

...
...

... . . . ...
...

...
0 0 0 0 . . . α β 0
0 0 0 0 . . . β α β

0 0 0 0 . . . 0 β α


.= αI +βT,

where T is defined by (3). This matrix arises in many applications, such as n coupled har-
monic oscillators (see the previous section) and solving the Laplace equation numerically.
Clearly M and T have the same eigenvectors and their respective eigenvalues are related
by µ = α+βλ . Thus, to understand M it is sufficient to work with the simpler matrix T .

EIGENVALUES AND EIGENVECTORS OF T
Usually one first finds the eigenvalues and then the eigenvectors of a matrix. For T , it

is a bit simpler first to find the eigenvectors. Let λ be an eigenvalue (necessarily real) and
V = (v1,v2, . . . ,vn) be a corresponding eigenvector. It will be convenient to write λ = 2c .
Then

0 = (T −λI)V =



−2c 1 0 0 . . . 0 0 0
1 −2c 1 0 . . . 0 0 0
0 1 −2c 1 . . . 0 0 0
...

...
...

... . . . ...
...

...
0 0 0 0 . . . −2c 1 0
0 0 0 0 . . . 1 −2c 1
0 0 0 0 . . . 0 1 −2c





v1
v2
v3
...

vn−2
vn−1
vn



=



−2cv1 + v2
v1−2cv2 + v3

...
vk−1−2cvk + vk+1

...
vn−2−2cvn−1 + vn

vn−1−2cvn



(4)

Except for the first and last equation, these have the form

vk−1−2cvk + vk+1 = 0. (5)
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We can also bring the first and last equations into this same form by introducing new arti-
ficial variables v0 and vn+1 , setting their values as zero: v0 = 0, vn+1 = 0.

The result (5) is a second order linear difference equation with constant coefficients
along with the boundary conditions v0 = 0, and vn+1 = 0. As usual for such equations one
seeks a solution with the form vk = rk . Equation (5) then gives 1− 2cr+ r2 = 0 whose
roots are

r± = c±
√

c2−1

Note also
2c = r+ r−1 and r+r− = 1. (6)

Case 1: c 6= ±1. In this case the two roots r± are distinct. Let r := r+ = c+
√

c2−1.
Since r− = c−

√
c2−1 = 1/r , we deduce that the general solution of (4) is

vk = Ark +Br−k, k = 2, . . . ,n−1 (7)

for some constants A and B which.
The first boundary condition, v0 = 0, gives A+B = 0, so

vk = A(rk− r−k), k = 1, . . . ,n−1. (8)

Since for a non-trivial solution we need A 6= 0, the second boundary condition, vn+1 = 0,
implies

rn+1− r−(n+1) = 0, so r2(n+1) = 1.

In particular, |r| = 1. Using (6), this gives 2|c| ≤ |r|+ |r|−1 = 2. Thus |c| ≤ 1. In fact,
|c|< 1 because we are assuming that c 6=±1.

Case 2: c =±1. Then r = c and the general solution of (4) is now

vk = (A+Bk)ck.

The boundary condition v0 = 0 implies that A = 0. The other boundary condition then
gives 0 = vn+1 = B(n+ 1)cn+1 . This is satisfied only in the trivial case B = 0. Conse-
quently the equations (4) have no non-trivial solution for c =±1.

It remains to rewrite our results in a simpler way. We are in Case 1 so |r| = 1. Thus
r = eiθ , c = cosθ , and 1 = r2(n+1) = e2i(n+1)θ . Consequently 2(n+ 1)θ = 2kπ for some
1 ≤ k ≤ n (we exclude k = 0 and k = n+ 1 because we know that c 6= ±1, so r 6= ±1).
Normalizing the eigenvectors V by the choice A = 1/2i , we summarize as follows:
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Theorem 1 The n×n matrix T has the eigenvalues

λk = 2c = 2cosθ = 2cos kπ

n+1 , 1≤ k ≤ n (9)

and corresponding eigenvectors

Vk = (sin kπ

n+1 ,sin 2kπ

n+1 , . . . ,sin nkπ

n+1). (10)

REMARK 1. If n = 2k+1 is odd, then the middle eigenvalue is zero because (k+1)π/(n+
1) = (k+1)π/2(k+1) = π/2.

REMARK 2. Since 2ab = a2 +b2− (a−b)2 ≤ a2 +b2 with equality only if a = b , we see
that for any x ∈ Rn

〈x, T x〉= 2(x1x2 + x2x3 + · · ·+ xn−1xn)≤ x2
1 +2(x2

2 + · · ·+ x2
n−1)+ x2

n ≤ 2‖x‖2

with equality only if x = 0. Similarly 〈x, T x〉 ≥ −2‖x‖2 . Thus, the eigenvalues of T are
in the interval −2 < λ < 2. Although we obtained more precise information above, it is
useful to observe that we could have deduced this so easily.

REMARK 3. Gershgorin’s circle theorem is also a simple way to get information about the
eigenvalues of a square (complex) matrix A = (ai j) . Let Di be the disk whose center is at
aii and radius is Ri = ∑ j 6=i|ai j| , so

|λ−a j j| ≤ R j.

These are the Gershgorin disks.

Theorem 2 (Gershgorin) Each eigenvalues of A lies in at least one of these Gershgorin
discs.

Proof: Say Ax = λx and say |xi|= max j|x j| . The ith component of Ax = λx is

(λ−aii)xi = ∑
j 6=i

ai jx j

so
|(λ−aii)xi| ≤∑

j 6=i
|ai j||x j| ≤ Ri|xi|.

That is, |λ−aii| ≤ Ri , as claimed.

By Gershgorin’s theorem, we observed immediately that all of the eigenvalues of T
satisfy |λ| ≤ 2.
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DETERMINANT OF T −λI
We use recursion on n , the size of the n× n matrix T . It will be convenient to build

on (4) and let Dn = det(T −λI) . As before, let λ = 2c . Then, expanding by minors using
the first column of (4) we obtain the formula

Dn =−2cDn−1−Dn−2 n = 3,4, . . . . (11)

Since D1 = −2c and D2 = 4c2−1, we can use (11) to define D0 := 1. The relation (11)
is, except for the sign of c , is identical to (5). The solution for c 6=±1 is thus

Dk = Ask +Bs−k, k = 0,1, . . . , (12)

where
−2c = s+ s−1 and s =−c+

√
c2−1. (13)

This time we determine the constants A , B from the initial conditions D0 = 1 and D1 =
−2c . The result is

Dk =


1

2
√

c2−1
(sk+1− s−(k+1)) if c 6=±1,

(−c)k(k+1) if c =±1.
(14)

For many purposes it is useful to rewrite this.
Case 1: |c|< 1. Then s =−c+ i

√
1− c2 has |s|= 1 so s = eiα and c =−cosα for some

0 < α < π . Therefore from (14),

Dk =
sin(k+1)α

sinα
. (15)

Case 2: c > 1. Write c = coshβ for some β > 0. Since −eβ−e−β =−2c = s+ s−1 , write
s =−eβ . Then from (14),

Dk = (−1)k sinh(k+1)β
sinhβ

, (16)

where we chose the sign in
√

c2−1 =−sinhβ so that D0 = 1.

Case 3: c < −1. Write c = −coshβ for some β > 0. Since et + e−t = −2c = s+ s−1 ,
write s = eβ . Then from (14),

Dk =
sinh(k+1)β

sinhβ
, (17)

where we chose the sign in
√

c2−1 =+sinh t so that D0 = 1.

Note that as t→ 0 in (15)–(17), that is, as c→±1. these formulas agree with the case
c =±1 in (14).
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