Math 425, Spring 2011

Jerry L. Kazdan

Problem Set 9

DUE: Thursday April 7 [Late papers will be accepted until 1:00 PM Friday].

1. a) In a bounded region $\Omega \subset \mathbb{R}^n$, let u(x,t) satisfy the modified heat equation

$$u_t = \Delta u + cu$$
, where *c* is a constant, (1)

as well as the initial and boundary conditions

$$u(x,0) = f(x)$$
, in Ω with $u(x,t) = 0$ for $x \in \partial \Omega$, $t \ge 0$. (2)

Let $u(x,t) = v(x,t)e^{\alpha t}$. Show that by picking the constant α cleverly, v satisfies equation (1) with c = 0 as well as (2).

Moral: one can easily reduce understanding equations (1)-(2) to the special case c = 0.

- b) Generalize this to $u_t + a(t)u = \Delta u$ where a(t) is any continuous function by seeking $u(x,t) = \varphi(t)v(x,t)$ and picking the function $\varphi(t)$ cleverly,
- 2. In a bounded region $\Omega \subset \mathbb{R}^n$, use the maximum principle to prove a uniqueness theorem for solutions u(x,t) of the inhomogeneous equation

$$u_t - \Delta u = F(x,t)$$
 in Ω

with

$$u(x,0) = f(x)$$
, in Ω and $u(x,t) = \varphi(x,t)$ for $x \in \partial \Omega$, $t \ge 0$.

3. Let $\Omega \subset \mathbb{R}^n$ be a bounded region with smooth boundary $\partial \Omega$ and let u(x,t) satisfy the heat equation

 $u_t = \Delta u$ for $x \in \Omega$ with initial temperature u(x, 0) = f(x).

If *u* satisfies Neumann boundary conditions $\partial u/\partial N = 0$ on $\partial \Omega$, show that

$$\lim_{t\to\infty} u(x,t) = \text{constant},$$

where the constant is the average of the initial temperature.

- 4. Let u(x,t) be a solution of the heat equation $u_t = u_{xx}$ for -1 < x < 1, t > 0 with initial value $u(x,0) = 1 x^2$ and boundary condition $u(\pm 1) = 0$.
 - a) Show that 0 < u(x,t) < 1 for all |x| < 1 and t > 0.
 - b) Explain why u(-x,t) = u(x,t) for all $-1 \le x \le 1$ and $t \ge 0$.

5. Let Ω be a bounded region in \mathbb{R}^n with smooth boundary $\partial \Omega$ and let $\varphi_k(x)$ and $\lambda_k > 0$, $k = 1, 2, 3, \ldots$ be the orthonormal eigenfunctions and corresponding eigenvalues for the Laplacian with zero Dirichlet boundary conditions:

$$-\Delta \varphi_k = \lambda_k \varphi_k$$
 in Ω , $\varphi_k(x) = 0$ for $x \in \partial \Omega$.

Here we use the (real) inner product $\langle u, v \rangle := \iint_{\Omega} u(x)v(x) dx$.

a) Show that the solution of the inhomogeneous equation

$$-\Delta u = F(x)$$
 for $x \in \Omega$, $u(x) = 0$ on $\partial \Omega$,

is

$$u(x) = \sum_{k=1}^{\infty} \frac{\langle F, \varphi_k \rangle}{\lambda_k} \varphi_k(x).$$

b) Show this can be written as

$$u(x) = \iint_{\Omega} F(y)G(x,y)\,dy,$$

where

$$G(x,y) := \sum_{k=1}^{\infty} \frac{\varphi_k(x)\varphi_k(y)}{\lambda_k}$$

is called Green's function for this problem.

Bonus Problem

1-B Let f(x) and g(x) be 2π periodic functions with

$$0 < a \le f(x) \le b$$
 and $0 < \alpha \le g(x) \le \beta$,

where a, b, α, β are constants. Assume u(x) is a smooth 2π periodic solution of

$$-u''(x) = f(x) - g(x)e^{u(x)}$$

Find constants *m* and *M* in terms of *a*, *b*, α , β so that

$$m \le u(x) \le M$$

for all x.

[Last revised: May 22, 2011]