Problem Set 9

DuE: Thursday April 7 [Late papers will be accepted until 1:00 PM Friday].

1. a) In a bounded region $\Omega \subset \mathbb{R}^{n}$, let $u(x, t)$ satisfy the modified heat equation

$$
\begin{equation*}
u_{t}=\Delta u+c u, \quad \text { where } c \text { is a constant } \tag{1}
\end{equation*}
$$

as well as the initial and boundary conditions

$$
\begin{equation*}
u(x, 0)=f(x), \quad \text { in } \Omega \quad \text { with } u(x, t)=0 \text { for } x \in \partial \Omega, \quad t \geq 0 \tag{2}
\end{equation*}
$$

Let $u(x, t)=v(x, t) e^{\alpha t}$. Show that by picking the constant α cleverly, v satisfies equation (1) with $c=0$ as well as (2).

Moral: one can easily reduce understanding equations (1)-(2) to the special case $c=0$.
b) Generalize this to $u_{t}+a(t) u=\Delta u$ where $a(t)$ is any continuous function by seeking $u(x, t)=\varphi(t) v(x, t)$ and picking the function $\varphi(t)$ cleverly,
2. In a bounded region $\Omega \subset \mathbb{R}^{n}$, use the maximum principle to prove a uniqueness theorem for solutions $u(x, t)$ of the inhomogeneous equation

$$
u_{t}-\Delta u=F(x, t) \quad \text { in } \Omega
$$

with

$$
u(x, 0)=f(x), \quad \text { in } \Omega \quad \text { and } u(x, t)=\varphi(x, t) \text { for } x \in \partial \Omega, \quad t \geq 0
$$

3. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded region with smooth boundary $\partial \Omega$ and let $u(x, t)$ satisfy the heat equation

$$
u_{t}=\Delta u \quad \text { for } x \in \Omega \quad \text { with initial temperature } u(x, 0)=f(x)
$$

If u satisfies Neumann boundary conditions $\partial u / \partial N=0$ on $\partial \Omega$, show that

$$
\lim _{t \rightarrow \infty} u(x, t)=\text { constant }
$$

where the constant is the average of the initial temperature.
4. Let $u(x, t)$ be a solution of the heat equation $u_{t}=u_{x x}$ for $-1<x<1, t>0$ with initial value $u(x, 0)=1-x^{2}$ and boundary condition $u(\pm 1)=0$.
a) Show that $0<u(x, t)<1$ for all $|x|<1$ and $t>0$.
b) Explain why $u(-x, t)=u(x, t)$ for all $-1 \leq x \leq 1$ and $t \geq 0$.
5. Let Ω be a bounded region in \mathbb{R}^{n} with smooth boundary $\partial \Omega$ and let $\varphi_{k}(x)$ and $\lambda_{k}>0, k=$ $1,2,3, \ldots$ be the orthonormal eigenfunctions and corresponding eigenvalues for the Laplacian with zero Dirichlet boundary conditions:

$$
-\Delta \varphi_{k}=\lambda_{k} \varphi_{k} \quad \text { in } \Omega, \quad \varphi_{k}(x)=0 \text { for } x \in \partial \Omega .
$$

Here we use the (real) inner product $\langle u, v\rangle:=\iint_{\Omega} u(x) v(x) d x$.
a) Show that the solution of the inhomogeneous equation

$$
-\Delta u=F(x) \quad \text { for } x \in \Omega, \quad u(x)=0 \text { on } \partial \Omega,
$$

is

$$
u(x)=\sum_{k=1}^{\infty} \frac{\left\langle F, \varphi_{k}\right\rangle}{\lambda_{k}} \varphi_{k}(x) .
$$

b) Show this can be written as

$$
u(x)=\iint_{\Omega} F(y) G(x, y) d y,
$$

where

$$
G(x, y):=\sum_{k=1}^{\infty} \frac{\varphi_{k}(x) \varphi_{k}(y)}{\lambda_{k}}
$$

is called Green's function for this problem.

Bonus Problem

1-B Let $f(x)$ and $g(x)$ be 2π periodic functions with

$$
0<a \leq f(x) \leq b \quad \text { and } \quad 0<\alpha \leq g(x) \leq \beta,
$$

where a, b, α, β are constants. Assume $u(x)$ is a smooth 2π periodic solution of

$$
-u^{\prime \prime}(x)=f(x)-g(x) e^{u(x)} .
$$

Find constants m and M in terms of a, b, α, β so that

$$
m \leq u(x) \leq M
$$

for all x.
[Last revised: May 22, 2011]

