Problem Set 8

DUE: Thursday March 31 [Late papers will be accepted until 1:00 PM Friday].

1. a) Let A be an $n \times n$ invertible real symmetric matrix, $b \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$. For $x \in \mathbb{R}^{n}$ consider the quadratic polynomial

$$
Q(x)=\langle x, A x\rangle+\langle b, x\rangle+c .
$$

Show that by a translation by some vector $v \in \mathbb{R}^{n}$, so $x=y+v$ in the new y variable the polynomial has the form

$$
Q(y)=\langle y, A y\rangle+\gamma
$$

for some real constant γ. HINT: Prove and use that for any vectors y and v we have $\langle A y, v\rangle=\langle A v, y\rangle$.
[This generalizes "completing the square" from high school algebra.]
b) Let $x, y \in \mathbb{R}$. Compute $\quad \iint_{\mathbb{R}^{2}} e^{-\left(2 x^{2}-2 x y+3 y^{2}+x-2 y-3\right)} d x d y$
c) Let $h(t)$ be a given function and say you know that $\int_{0}^{\infty} h(t) d t=\alpha$. If C be a positive definite real (symmetric) 2×2 matrix and $x \in \mathbb{R}^{2}$. Show that

$$
\iint_{\mathbb{R}^{2}} h(\langle x, C x\rangle) d A=\frac{\pi \alpha}{\sqrt{\operatorname{det} C}}
$$

and use this to compute

$$
\iint_{\mathbb{R}^{2}} \frac{d x d y}{\left(1+x^{2}+2 x y+5 y^{2}\right)^{2}}
$$

where $x, y \in \mathbb{R}$.
2. Let λ_{1} be the lowest eigenvalue of the $n \times n$ real symmetric matrix A. Show that

$$
\lambda_{1}=\min _{x \neq 0} \frac{\langle x, A x\rangle}{\|x\|^{2}}
$$

3. In class for $x \in \mathbb{R}^{3}$ we used the special function $v(x)=\frac{A}{\left|x-x_{0}\right|}$ to find a formula for a particular solution of the inhomogeneous equation $\Delta u=h(x)$:

$$
u\left(x_{0}\right)=-\frac{1}{4 \pi} \iiint_{\mathbb{R}^{3}} \frac{h(x)}{\left|x-x_{0}\right|} d x
$$

Use the same idea with $v(x)=A \log \left|x-x_{0}\right|$ to find a formula for a particular solution of the inhomogeneous equation $\Delta u=h(x)$ in the plane \mathbb{R}^{2}. Assume $u(x)$ (and hence $h(x)$) vanishes outside some sphere.
4. a) Let B be the ball $\left\{r^{2}=x^{2}+y^{2}+z^{2}<a^{2}\right\}$ in \mathbb{R}^{3}. Compute all the radial eigenfunctions $u(r)$ of $-\Delta$ with Neumann boundary conditions $\partial u / \partial r=0$ for $r=a$. Thus, you are solving $-\left[u_{r r}+\frac{2}{r} u_{r}\right]=\lambda u$. [SUGGESTION: the substitution $v(r)=r u(r)$ is useful. Note it implies $v(0)=0$.]
b) Compute the corresponding eigenvalues (there is an explicit formula).
c) Use this to solve the heat equation $u_{t}=\Delta u$ in B with $u_{r}=0$ on the boundary in the special case where the initial temperature, $u(x, 0)=\varphi(r)$ depends only on r. Your solution will be an infinite series. Please include a formula for finding the coefficients.
5. Find a bounded harmonic function in the exterior of the unit sphere $\{r>1\}$ in \mathbb{R}^{3} that satisfies $\partial u / \partial r=-\cos \theta$ on the boundary $r=1$.

