Math 425, Spring 2011

Jerry L. Kazdan

Problem Set 8

DUE: Thursday March 31 [Late papers will be accepted until 1:00 PM Friday].

1. a) Let A be an $n \times n$ invertible real symmetric matrix, $b \in \mathbb{R}^n$ and $c \in \mathbb{R}$. For $x \in \mathbb{R}^n$ consider the quadratic polynomial

$$Q(x) = \langle x, Ax \rangle + \langle b, x \rangle + c.$$

Show that by a translation by some vector $v \in \mathbb{R}^n$, so x = y + v in the new y variable the polynomial has the form

$$Q(y) = \langle y, Ay \rangle + \gamma$$

for some real constant γ . HINT: Prove and use that for any vectors y and v we have $\langle Ay, v \rangle = \langle Av, y \rangle$.

[This generalizes "completing the square" from high school algebra.]

- b) Let $x, y \in \mathbb{R}$. Compute $\iint_{\mathbb{R}^2} e^{-(2x^2 2xy + 3y^2 + x 2y 3)} dx dy$
- c) Let h(t) be a given function and say you know that $\int_0^{\infty} h(t) dt = \alpha$. If C be a positive definite real (symmetric) 2×2 matrix and $x \in \mathbb{R}^2$. Show that

$$\iint_{\mathbb{R}^2} h(\langle x, Cx \rangle) \, dA = \frac{\pi \alpha}{\sqrt{\det C}}$$

and use this to compute

$$\iint_{\mathbb{R}^2} \frac{dxdy}{(1+x^2+2xy+5y^2)^2},$$

where $x, y \in \mathbb{R}$.

2. Let λ_1 be the lowest eigenvalue of the $n \times n$ real symmetric matrix A. Show that

$$\lambda_1 = \min_{x \neq 0} \frac{\langle x, Ax \rangle}{\|x\|^2}.$$

3. In class for $x \in \mathbb{R}^3$ we used the special function $v(x) = \frac{A}{|x - x_0|}$ to find a formula for a particular solution of the inhomogeneous equation $\Delta u = h(x)$:

$$u(x_0) = -\frac{1}{4\pi} \iiint_{\mathbb{R}^3} \frac{h(x)}{|x - x_0|} dx.$$

Use the same idea with $v(x) = A \log |x - x_0|$ to find a formula for a particular solution of the inhomogeneous equation $\Delta u = h(x)$ in the plane \mathbb{R}^2 . Assume u(x) (and hence h(x)) vanishes outside some sphere.

- 4. a) Let *B* be the ball $\{r^2 = x^2 + y^2 + z^2 < a^2\}$ in \mathbb{R}^3 . Compute all the *radial* eigenfunctions u(r) of $-\Delta$ with Neumann boundary conditions $\partial u/\partial r = 0$ for r = a. Thus, you are solving $-[u_{rr} + \frac{2}{r}u_r] = \lambda u$. [SUGGESTION: the substitution v(r) = ru(r) is useful. Note it implies v(0) = 0.]
 - b) Compute the corresponding eigenvalues (there is an explicit formula).
 - c) Use this to solve the heat equation $u_t = \Delta u$ in *B* with $u_r = 0$ on the boundary in the special case where the initial temperature, $u(x,0) = \varphi(r)$ depends only on *r*. Your solution will be an infinite series. Please include a formula for finding the coefficients.
- 5. Find a bounded harmonic function in the *exterior* of the unit sphere $\{r > 1\}$ in \mathbb{R}^3 that satisfies $\partial u/\partial r = -\cos\theta$ on the boundary r = 1.