Problem Set 7

DUE: Thursday March 24 [Late papers will be accepted until 1:00 PM Friday].

1. Suppose u is a twice differentiable function on \mathbb{R} which satisfies the ordinary differential equation

$$
u^{\prime \prime}+b(x) u^{\prime}-c(x) u=0
$$

where $b(x)$ and $c(x)$ are continuous functions on \mathbb{R} with $c(x)>0$ for every $x \in(0,1)$.
a) Show that u cannot have a positive local maximum in the interval $(0,1)$, that is, have a local maximum at a point p where $u(p)>0$. Also show that u cannot have a negative local minimum in $(0,1)$.
[The example $u^{\prime \prime}+u=0$ has $u(x)=\sin x$ as a solution, which does have posivive local maxima and negative local minima. This shows that some assumption, such as our $c(x)>0$ is needed.]
b) If $u(0)=u(1)=0$, prove that $u(x)=0$ for every $x \in[0,1]$.
c) If u satisfies

$$
4 u_{x x}+3 u_{y y}-5 u=0
$$

in a region $\mathcal{D} \subset \mathbb{R}^{2}$, show that it cannot have a local positive maximum. Also show that u cannot have a local negative minimum.
d) Repeat the above for a solution of

$$
4 u_{x x}-2 u_{x y}+3 u_{y y}+7 u_{x}+u_{y}-5 u=0
$$

e) If a function $u(x, y)$ satisfies the above equation in a bounded region $\mathcal{D} \in \mathbb{R}^{2}$ and is zero on the boundary of the region, show that $u(x, y)$ is zero throughout the region.
2. Let $Q \subset \mathbb{R}^{2}$ be the rectangle $Q:=\{0<x<2,0<y<1\}$. Solve the Dirichlet problem

$$
u_{x x}+u_{y y}=0 \text { in } Q
$$

with

$$
u(x, 0)=u(x, 1)=0, \quad u(0, y)=0, \quad u(2, y)=\sin (4 \pi y)
$$

3. Solve $\Delta u=0$ inside the disk of radius 2 with boundary condition $u(2, \theta)=\sin (3 \theta)$.
4. Find a version of the Poisson formula for solving $\Delta u=0$ in the exterior of the unit disk, so $r>1$. Assume we require that the solution remains bounded as $r \rightarrow \infty$.
Find the solution explicitly with the boundary condition $u(1, \theta)=\sin (2 \theta)$.
5. Let Ω be the annulus $\Omega:=\left\{(x, y) \in \mathbb{R}^{2} \mid 1<x^{2}+y^{2}<4\right\}$. Solve the following Dirichlet problem for this using polar coordinates $u(r, \theta)$.

$$
\Delta u=0 \quad \text { in } \Omega, \quad u(1, \theta)=0, \quad u(2, \theta)=\cos \theta
$$

Bonus Problem

1-B a) Find the eigenvalues and eigenfunctions for the boundary value problem

$$
-u^{\prime \prime}=\lambda u, \quad u(0)=0, \quad u^{\prime}(3)+u(3)=0
$$

b) If we number the eigenvalues in increasing order, $\lambda_{1}<\lambda_{2}<\cdots$, find constants A amd B so that

$$
\lim n \rightarrow \infty\left[\lambda_{n}-(A n+B)^{2}\right]=0
$$

[Last revised: March 18, 2011]

