Math 425, Spring 2011

Jerry L. Kazdan

Problem Set 7

DUE: Thursday March 24 [Late papers will be accepted until 1:00 PM Friday].

1. Suppose u is a twice differentiable function on \mathbb{R} which satisfies the ordinary differential equation

$$u'' + b(x)u' - c(x)u = 0,$$

where b(x) and c(x) are continuous functions on \mathbb{R} with c(x) > 0 for every $x \in (0, 1)$.

a) Show that *u* cannot have a positive local maximum in the interval (0,1), that is, have a local maximum at a point *p* where u(p) > 0. Also show that *u* cannot have a negative local minimum in (0,1).

[The example u'' + u = 0 has $u(x) = \sin x$ as a solution, which does have posivive local maxima and negative local minima. This shows that some assumption, such as our c(x) > 0 is needed.]

- b) If u(0) = u(1) = 0, prove that u(x) = 0 for every $x \in [0, 1]$.
- c) If *u* satisfies

$$4u_{xx} + 3u_{yy} - 5u = 0$$

in a region $\mathcal{D} \subset \mathbb{R}^2$, show that it cannot have a local positive maximum. Also show that *u* cannot have a local negative minimum.

d) Repeat the above for a solution of

$$4u_{xx} - 2u_{xy} + 3u_{yy} + 7u_x + u_y - 5u = 0.$$

- e) If a function u(x,y) satisfies the above equation in a bounded region $\mathcal{D} \in \mathbb{R}^2$ and is zero on the boundary of the region, show that u(x,y) is zero throughout the region.
- 2. Let $Q \subset \mathbb{R}^2$ be the rectangle $Q := \{0 < x < 2, 0 < y < 1\}$. Solve the Dirichlet problem

 $u_{xx} + u_{yy} = 0 \quad \text{in} \quad Q,$

with

$$u(x,0) = u(x,1) = 0,$$
 $u(0,y) = 0,$ $u(2,y) = \sin(4\pi y).$

- 3. Solve $\Delta u = 0$ inside the disk of radius 2 with boundary condition $u(2,\theta) = \sin(3\theta)$.
- 4. Find a version of the Poisson formula for solving Δu = 0 in the *exterior* of the unit disk, so r > 1. Assume we require that the solution remains bounded as r→∞.
 Find the solution explicitly with the boundary condition u(1,θ) = sin(2θ).

5. Let Ω be the annulus $\Omega := \{(x,y) \in \mathbb{R}^2 | 1 < x^2 + y^2 < 4\}$. Solve the following Dirichlet problem for this using polar coordinates $u(r, \theta)$.

$$\Delta u = 0$$
 in Ω , $u(1,\theta) = 0$, $u(2,\theta) = \cos \theta$.

Bonus Problem

1-B a) Find the eigenvalues and eigenfunctions for the boundary value problem

$$-u'' = \lambda u, \qquad u(0) = 0, \quad u'(3) + u(3) = 0$$

b) If we number the eigenvalues in increasing order, $\lambda_1 < \lambda_2 < \cdots$, find constants A and B so that

$$\lim n \to \infty [\lambda_n - (An + B)^2] = 0.$$

[Last revised: March 18, 2011]