Problem Set 6

DuE: Thursday March 17 [Late papers will be accepted until 1:00 PM Friday].

1. This problem concerns orthogonal projections into a subspace of a larger space.
a) Let $\mathbf{U}=(1,1,0,1)$ and $\mathbf{V}=(-1,2,1,-1)$ be given orthogonal vectors in R^{4} and let \mathcal{S} be the two dimensional subspace they span. Write the vector $\mathbf{X}=(1,1,1,-1)$ in the form $\mathbf{X}=a \mathbf{U}+b \mathbf{V}+\mathbf{W}$, where a, b are scalars and \mathbf{W} is a vector perpendicular to \mathbf{U} and \mathbf{V}. We call $\mathbf{X}_{1}=a \mathbf{U}+b \mathbf{V}$, which is in \mathcal{S}, the orthogonal projection of \mathbf{X} into \mathcal{S}. The notation $P_{S} X=a \mathbf{U}+b \mathbf{V}$ for the projection of X into \mathcal{S} is sometimes helpful.
b) Let \mathcal{T} be the three dimensional space spanned by \mathbf{U}, \mathbf{V}, and \mathbf{W}. Find the orthogonal projection of $\mathbf{Y}=(1,0,0,0)$ into \mathcal{T}.
c) Find an orthonormal basis for \mathcal{S} and then for \mathcal{T}.
2. Suppose f is a function of one variable that has a continuous second derivative. Show that for any constants a and b, the function $u(x, y):=f(a x+b y)$ is a solution of the Monge-Ampère Equation $u_{x x} u_{y y}-u_{x y}^{2}=0$.
3. Let $u(x, t)$ be a solution of the wave equation $u_{t t}=c^{2} u_{x x}$ for $-1<x<1, t>0$ with

$$
u(x, 0)=\left(1-x^{2}\right), \quad u_{t}(x, 0)=0, \quad u(-1, t)=u(1, t)=0 .
$$

Without solving the equation explicitly, explain why $u(x, t)=u(-x, t)$ for all $t>0$ and $-1<$ $x<1$.
4. Let $u(x, t)$ be the temperature in a rod of length L that satisfies the partial differential equation:

$$
u_{t}=u_{x x}, \quad 0<x<L, \quad t>0
$$

together with the initial condition

$$
u(x, 0)=\varphi(x)
$$

where φ satisfies $\varphi(0)=\varphi(L)=0$. Assume u also satisfies the Neumann boundary conditions

$$
u_{x}(0, t)=0, \quad \text { and } \quad u_{x}(L, t)=0
$$

Let $A(t)$ be the average temperature in the rod at time t, which is given by

$$
A(t)=\frac{1}{L} \int_{0}^{L} u(x, t) d x
$$

Show that $A(t)$ is a constant (so it is independent of t) and thus the average of the initial temperature.
Remark: The Bonus Problem below asks you to show that $\lim _{t \rightarrow \infty} u(x, t)=A(0)$.
5. Consider the wave equation with friction: $u_{t t}+2 b u_{t}=u_{x x}, \quad b>0$ a constant, for $0<x<\pi$ and $t>0$ with the initial and boundary conditions

$$
u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x), \quad u(0)=u(\pi)=0
$$

a) Use separation of variables to find the solution as a Fourier series in x and say how you would use the initial conditions to determine the coefficients.
b) Assuming the series converges, show that $\lim _{t \rightarrow \infty} u(x, t)=0$, just the effect we anticipate friction will give. [This is a generalization of the fact that if $b>, c>0$ are any positive constants, then all the solutions of the damped oscillator equation, $u^{\prime \prime}+b u^{\prime}+c u=0$, tend to zero as $t \rightarrow \infty$.]
6. In \mathbb{R}^{n} the distance r from a point $x:=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to the origin is $r^{2}=x_{1}^{2}+\cdots+x_{n}^{2}$. Assume that the function $u(x)$ depends only on r.
a) Show that $\partial r / \partial x_{j}=x_{j} / r$ and use this to show that

$$
\frac{\partial u(x)}{\partial x_{j}}=\frac{x_{j}}{r} \frac{\partial u}{\partial r}
$$

b) Compute $\frac{\partial^{2} u(x)}{\partial x_{j}^{2}}$ and consequently

$$
\Delta u(r)=u_{r r}+\frac{n-1}{r} u_{r} .
$$

c) Find all harmonic functions that is, solutions of $\Delta u=0$, that depend only on r. Note the answer will depend on n and that the solution might blow-up at the origin.
d) Let $\mathcal{A} \subset \mathbb{R}^{2}$ be the annular region $1<\|x\|<2$. Find a solution of $\Delta u=0$ in \mathcal{A} that satisfies the boundary conditions $u(x)=\alpha$ when $\|x\|=1$ and $u(x)=\beta$ when $\|x\|=2$.
e) Generalize the previous part to a shell $\mathcal{A}=\left\{x \in \mathbb{R}^{n} \mid 1<\|x\|<2\right\}$.

Bonus Problem

1-B [CONTINUATION OF PROBLEM 4] Show that $\lim _{t \rightarrow \infty} u(x, t)=A(0)$.
[Last revised: March 9, 2011]

