Problem Set 6

DUE: Thursday March 17 [Late papers will be accepted until 1:00 PM Friday].

- 1. This problem concerns orthogonal projections into a subspace of a larger space.
 - a) Let $\mathbf{U} = (1,1,0,1)$ and $\mathbf{V} = (-1,2,1,-1)$ be given orthogonal vectors in \mathbb{R}^4 and let \mathcal{S} be the two dimensional subspace they span. Write the vector $\mathbf{X} = (1,1,1,-1)$ in the form $\mathbf{X} = a\mathbf{U} + b\mathbf{V} + \mathbf{W}$, where *a*, *b* are scalars and **W** is a vector perpendicular to **U** and **V**. We call $\mathbf{X}_1 = a\mathbf{U} + b\mathbf{V}$, which is in \mathcal{S} , the *orthogonal projection* of **X** *into* \mathcal{S} . The notation $P_{\mathcal{S}}X = a\mathbf{U} + b\mathbf{V}$ for the projection of X into \mathcal{S} is sometimes helpful.
 - b) Let \mathcal{T} be the three dimensional space spanned by U, V, and W. Find the orthogonal projection of $\mathbf{Y} = (1,0,0,0)$ into \mathcal{T} .
 - c) Find an orthonormal basis for S and then for T.
- 2. Suppose *f* is a function of one variable that has a continuous second derivative. Show that for any constants *a* and *b*, the function u(x,y) := f(ax + by) is a solution of the *Monge-Ampère* Equation $u_{xx}u_{yy} u_{xy}^2 = 0$.
- 3. Let u(x,t) be a solution of the wave equation $u_{tt} = c^2 u_{xx}$ for -1 < x < 1, t > 0 with

$$u(x,0) = (1-x^2), \quad u_t(x,0) = 0, \qquad u(-1,t) = u(1,t) = 0.$$

Without solving the equation explicitly, explain why u(x,t) = u(-x,t) for all t > 0 and -1 < x < 1.

4. Let u(x,t) be the temperature in a rod of length L that satisfies the partial differential equation:

$$u_t = u_{xx}, \qquad 0 < x < L, \quad t > 0$$

together with the initial condition

$$q(x,0) = \varphi(x)$$

where φ satisfies $\varphi(0) = \varphi(L) = 0$. Assume *u* also satisfies the Neumann boundary conditions

$$u_x(0,t) = 0$$
, and $u_x(L,t) = 0$,

Let A(t) be the average temperature in the rod at time t, which is given by

u

$$A(t) = \frac{1}{L} \int_0^L u(x,t) \, dx$$

Show that A(t) is a constant (so it is independent of t) and thus the average of the initial temperature.

REMARK: The Bonus Problem below asks you to show that $\lim_{t \to 0} u(x,t) = A(0)$.

5. Consider the wave equation with friction: $u_{tt} + 2bu_t = u_{xx}$, b > 0 a constant, for $0 < x < \pi$ and t > 0 with the initial and boundary conditions

$$u(x,0) = f(x), \quad u_t(x,0) = g(x), \quad u(0) = u(\pi) = 0.$$

- a) Use separation of variables to find the solution as a Fourier series in x and say how you would use the initial conditions to determine the coefficients.
- b) Assuming the series converges, show that $\lim_{t\to\infty} u(x,t) = 0$, just the effect we anticipate friction will give. [This is a generalization of the fact that if b > , c > 0 are any positive constants, then all the solutions of the damped oscillator equation, u'' + bu' + cu = 0, tend to zero as $t \to \infty$.]
- 6. In \mathbb{R}^n the distance *r* from a point $x := (x_1, x_2, \dots, x_n)$ to the origin is $r^2 = x_1^2 + \dots + x_n^2$. Assume that the function u(x) depends *only* on *r*.
 - a) Show that $\partial r/\partial x_j = x_j/r$ and use this to show that

$$\frac{\partial u(x)}{\partial x_j} = \frac{x_j}{r} \frac{\partial u}{\partial r}$$

b) Compute $\frac{\partial^2 u(x)}{\partial x_j^2}$ and consequently

$$\Delta u(r) = u_{rr} + \frac{n-1}{r}u_r$$

- c) Find all harmonic functions that is, solutions of $\Delta u = 0$, that depend only on *r*. Note the answer will depend on *n* and that the solution might blow-up at the origin.
- d) Let $\mathcal{A} \subset \mathbb{R}^2$ be the annular region 1 < ||x|| < 2. Find a solution of $\Delta u = 0$ in \mathcal{A} that satisfies the boundary conditions $u(x) = \alpha$ when ||x|| = 1 and $u(x) = \beta$ when ||x|| = 2.
- e) Generalize the previous part to a shell $\mathcal{A} = \{x \in \mathbb{R}^n \mid 1 < ||x|| < 2\}$.

Bonus Problem

1-B [CONTINUATION OF PROBLEM 4] Show that $\lim_{t \to \infty} u(x,t) = A(0)$.

[Last revised: March 9, 2011]