Problem Set 5

DUE: Thurs. Feb. 24 Late papers will be accepted until 1:00 PM Friday.

1. In \mathbb{R}^4 the vectors

 $U_1 := (1, 1, 1, 1), \quad U_2 := (1, 1, -1, -1), \quad U_3 := (2, -2, 2, -2), \quad U_4 := (1, -1, -1, 1)$

are orthogonal, as you can easily verify.

- a) Use these to find an orthonormal basis $e_k := \alpha_k U_k$, k = 1, ..., 4.
- b) Write the vector v := (0, -2, 2, 5) using this basis: $v = a_1e_1 + a_2e_2 + a_3e_3 + a_4e_4$.
- c) Find the projection, Pv, of v into the plane spanned by U_2 and U_3 .
- d) Compute ||Pv||.
- 2. Let X be a linear space with an inner product (not necessarily \mathbb{R}^n) and let $P: X \to X$ be an *orthogonal projection*, so $P^2 = P$ and $P = P^*$. Write V for the image of P; it is the space into which vectors are projected. Given $x \in X$, write x = v + w, where v = Px is the projection of x into V. Show that w is orthogonal to V.
- 3. Let f(x) be a 2π periodic function. Use Fourier series to investigate finding 2π periodic solutions of

$$-u''(x) + u = f(x),$$

so we want u and all of its derivatives to be 2π periodic.

This is routine – and short. Expand f in a Fourier series, so $f(x) = \sum_{k=-\infty}^{\infty} a_k e^{ikx}$ and seek the solution as a Fourier series $u(x) = \sum_{k=-\infty}^{\infty} c_k e^{ikx}$. So all you need do is determine the c_k 's in terms of the a_k 's.

4. Consider the wave equation $u_{tt} = u_{xx}$, $0 \le x \le \pi$ with the boundary conditions

$$u(0,t) = 0, \quad u(\pi,t) = 0, \quad (t \ge 0).$$

- a) Find all solutions of the special form $u(x,t) = \phi(x)T(t)$ (standing wave solutions).
- b) Use this to solve the wave equation with the above boundary conditions and the initial conditions

$$u(x,0) = 2\sin(3x) - 7\sin(19x), \quad u_t(x,0) = 0.$$

5. Consider the wave equation $u_{tt} = u_{xx}$, $0 \le x \le \pi$ with the mixed boundary conditions

$$u(0,t) = 0, \quad \frac{\partial u}{\partial x}(\pi,t) = 0, \quad (t \ge 0).$$

- a) Find all solutions of the special form $u(x,t) = \phi(x)T(t)$ (standing wave solutions).
- b) Use this to solve the wave equation with the above boundary conditions and the initial conditions $(2, 0) = 4 \pm (5, 12) = 7 \pm (0, 12) = 0$

$$u(x,0) = 4\sin(5x/2) - 7\sin(9x/2), \qquad u_t(x,0) = 0$$

6. LORENTZ TRANSFORMATIONS Let u(x,t) be a given function. Find all linear changes of variable

$$\tau = \alpha x + \beta t, \qquad z = \gamma x + \delta t$$

that keep the wave operator invariant, that is

$$u_{tt}-c^2u_{xx}=u_{\tau\tau}-c^2u_{zz}.$$

SUGGESTION: You will be led to three equations for the four coefficients. Try to find a cleaner way to write these in terms of some other parameter. Here is a related example. Say a, b, c, and d satisfy

$$a^{2} + b^{2} = 1, \quad c^{2} + d^{2} = 1, \quad ac + bd = 0.$$
 (1)

In this example, try writing $a = \cos \theta$. Then $b = \pm \sin \theta$ etc and you'll get equations for the four coefficients in terms of the one parameter θ (with some choices for \pm a few places?). Upshot, the equations (1) just describe a rotation (and possibly also a reflection) around the origin in the plane \mathbb{R}^2 .

- 7. [INTEGRATION BY PARTS FOR MULTIPLE INTEGRALS] Let u(x, y) be a scalar function and $\mathbf{F}(x, y)$ a vector field in a bounded region \mathcal{D} in \mathbb{R}^2 and let the closed curve *C* be the boundary of \mathcal{D} with **N** be the unit outer normal vector field on this boundary.
 - a) Prove the identity $\nabla \cdot (u\mathbf{F}) = \nabla u \cdot \mathbf{F} + u\nabla \cdot \mathbf{F}$. Compare this with the special case of a function of one variable.
 - b) Use the divergence theorem to obtain the following generalization of *integration by parts* for multiple integrals:

$$\iint_{\mathcal{D}} u \nabla \cdot \mathbf{F} \, dA = \oint_{C} u \mathbf{F} \cdot \mathbf{N} \, ds - \iint_{\mathcal{D}} \nabla u \cdot \mathbf{F} \, dA.$$

Notice that for a function of one variable with \mathcal{D} being the interval $\{a < x < b\}$, this reduces precisely to the usual formula for integration by parts.

c) Generalize this formula to the case where \mathcal{D} is a bounded (solid) region in three dimensional space.

d) One frequently uses this with $\mathbf{F} = \nabla v$. Show the above formula for integration by parts becomes (say in two dimensions)

$$\iint_{\mathcal{D}} u\Delta v \, dA = \oint_{C} u\nabla v \cdot \mathbf{N} \, ds - \iint_{\mathcal{D}} \nabla u \cdot \nabla v \, dA.$$

To what does this reduce for functions on one variable?

e) As a short application using this, say u(x,y) is a harmonic function in a bounded region D, so ∇·∇u = 0. One can think of u(x,y) as being the equilibrium temperature of D. Let C is the boundary of D. If u = 0 on C, it is plausible that one must have u(x,y) = 0 throughout D. Show how this follows from the above formula. What is the analogous assertion for functions of one variable, where a harmonic function is just a solution of u'' = 0?

Bonus Problem

1-B [FOURIER SERIES IN SEVERAL VARIABLES]. Fourier series extends immediately to functions of several variables. Let T^2 be the square $\{(x, y) \in \mathbb{R}^2 \mid -\pi \le x \le \pi, -\pi \le y \le \pi\}$ and consider functions f(x, y) that are 2π periodic in both variables with the $L_2(T^2)$ inner product

$$\langle f,g\rangle := \iint_{T^2} f(x,y)\overline{g(x,y)}\,dx\,dy.$$

a) Show that the functions

$$\varphi_{jk} := e^{i(jx+ky)}$$
 $j,k = 0,\pm 1,\pm 2,\ldots$

are orthogonal. How should you modify these to get orthonormal functions?

b) If f(x,y) is 2π periodic in both variables, use Fourier series to investigate finding periodic solutions u(x,y) of

$$-\Delta u(x, y) + u = f(x, y).$$

[This is almost identical to Problem 3 above.]

c) If f(x,y) is 2π periodic in both variables, use Fourier series to investigate finding periodic solutions of

$$-\Delta u(x,y) = f(x,y).$$

[Last revised: February 23, 2011]