
Math 425, Spring 2011 Jerry L. Kazdan

Problem Set 5
DUE: Thurs. Feb. 24 Late papers will be accepted until 1:00 PM Friday.

1. In R4 the vectors

U1 := (1,1,1,1), U2 := (1,1,−1,−1), U3 := (2,−2,2,−2), U4 := (1,−1,−1,1)

are orthogonal, as you can easily verify.

a) Use these to find an orthonormal basis ek := αkUk , k = 1, . . . ,4.

b) Write the vector v := (0,−2,2,5) using this basis: v = a1e1 +a2e2 +a3e3 +a4e4 .

c) Find the projection, Pv , of v into the plane spanned by U2 and U3 .

d) Compute ‖Pv‖ .

2. Let X be a linear space with an inner product (not necessarily Rn ) and let P : X → X be an
orthogonal projection, so P2 = P and P = P∗ . Write V for the image of P ; it is the space into
which vectors are projected. Given x ∈ X , write x = v +w , where v = Px is the projection of
x into V . Show that w is orthogonal to V .

3. Let f (x) be a 2π periodic function. Use Fourier series to investigate finding 2π periodic
solutions of

−u′′(x)+u = f (x),

so we want u and all of its derivatives to be 2π periodic.

This is routine – and short. Expand f in a Fourier series, so f (x) = ∑
∞
k=−∞ akeikx and seek the

solution as a Fourier series u(x) = ∑
∞
k=−∞ ckeikx . So all you need do is determine the ck ’s in

terms of the ak ’s.

4. Consider the wave equation utt = uxx , 0 ≤ x ≤ π with the boundary conditions

u(0, t) = 0, u(π, t) = 0, (t ≥ 0).

a) Find all solutions of the special form u(x, t) = φ(x)T (t) (standing wave solutions).

b) Use this to solve the wave equation with the above boundary conditions and the initial
conditions

u(x,0) = 2sin(3x)−7sin(19x), ut(x,0) = 0.
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5. Consider the wave equation utt = uxx , 0 ≤ x ≤ π with the mixed boundary conditions

u(0, t) = 0,
∂u
∂x

(π, t) = 0, (t ≥ 0).

a) Find all solutions of the special form u(x, t) = φ(x)T (t) (standing wave solutions).

b) Use this to solve the wave equation with the above boundary conditions and the initial
conditions

u(x,0) = 4sin(5x/2)−7sin(9x/2), ut(x,0) = 0.

6. LORENTZ TRANSFORMATIONS Let u(x, t) be a given function. Find all linear changes of
variable

τ = αx+βt, z = γx+δt

that keep the wave operator invariant, that is

utt − c2uxx = uττ− c2uzz.

SUGGESTION: You will be led to three equations for the four coefficients. Try to find a cleaner
way to write these in terms of some other parameter. Here is a related example. Say a , b , c ,
and d satisfy

a2 +b2 = 1, c2 +d2 = 1, ac+bd = 0. (1)

In this example, try writing a = cosθ . Then b = ±sinθ etc and you’ll get equations for the
four coefficients in terms of the one parameter θ (with some choices for ± a few places?).
Upshot, the equations (1) just describe a rotation (and possibly also a reflection) around the
origin in the plane R2 .

7. [INTEGRATION BY PARTS FOR MULTIPLE INTEGRALS] Let u(x,y) be a scalar function and
F(x,y) a vector field in a bounded region D in R2 and let the closed curve C be the boundary
of D with N be the unit outer normal vector field on this boundary.

a) Prove the identity ∇ · (uF) = ∇u ·F + u∇ ·F . Compare this with the special case of a
function of one variable.

b) Use the divergence theorem to obtain the following generalization of integration by parts
for multiple integrals: ZZ

D
u∇ ·FdA =

I
C

uF ·Nds−
ZZ

D
∇u ·FdA.

Notice that for a function of one variable with D being the interval {a < x < b} , this
reduces precisely to the usual formula for integration by parts.

c) Generalize this formula to the case where D is a bounded (solid) region in three dimen-
sional space.
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d) One frequently uses this with F = ∇v . Show the above formula for integration by parts
becomes (say in two dimensions)ZZ

D
u∆vdA =

I
C

u∇v·Nds−
ZZ

D
∇u ·∇vdA.

To what does this reduce for functions on one variable?

e) As a short application using this, say u(x,y) is a harmonic function in a bounded region
D , so ∇·∇u = 0. One can think of u(x,y) as being the equilibrium temperature of D .
Let C is the boundary of D . If u = 0 on C , it is plausible that one must have u(x,y) = 0
throughout D . Show how this follows from the above formula. What is the analogous
assertion for functions of one variable, where a harmonic function is just a solution of
u′′ = 0?
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Bonus Problem

1-B [FOURIER SERIES IN SEVERAL VARIABLES] . Fourier series extends immediately to functions
of several variables. Let T 2 be the square {(x,y)∈R2 | −π≤ x≤ π , −π≤ y≤ π} and consider
functions f (x,y) that are 2π periodic in both variables with the L2(T 2) inner product

〈 f , g〉 :=
ZZ

T 2
f (x,y)g(x,y)dxdy.

a) Show that the functions

ϕ jk := ei( jx+ky) j,k = 0,±1,±2, . . .

are orthogonal. How should you modify these to get orthonormal functions?

b) If f (x,y) is 2π periodic in both variables, use Fourier series to investigate finding periodic
solutions u(x,y) of

−∆u(x,y)+u = f (x,y).

[This is almost identical to Problem 3 above.]

c) If f (x,y) is 2π periodic in both variables, use Fourier series to investigate finding periodic
solutions of

−∆u(x,y) = f (x,y).

[Last revised: February 23, 2011]
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