## Problem Set 5

DUE: Thurs. Feb. 24 Late papers will be accepted until 1:00 PM Friday.

1. In $\mathbb{R}^{4}$ the vectors

$$
U_{1}:=(1,1,1,1), \quad U_{2}:=(1,1,-1,-1), \quad U_{3}:=(2,-2,2,-2), \quad U_{4}:=(1,-1,-1,1)
$$

are orthogonal, as you can easily verify.
a) Use these to find an orthonormal basis $e_{k}:=\alpha_{k} U_{k}, k=1, \ldots, 4$.
b) Write the vector $v:=(0,-2,2,5)$ using this basis: $v=a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}+a_{4} e_{4}$.
c) Find the projection, $P v$, of $v$ into the plane spanned by $U_{2}$ and $U_{3}$.
d) Compute $\|P v\|$.
2. Let $X$ be a linear space with an inner product (not necessarily $\mathbb{R}^{n}$ ) and let $P: X \rightarrow X$ be an orthogonal projection, so $P^{2}=P$ and $P=P^{*}$. Write $V$ for the image of $P$; it is the space into which vectors are projected. Given $x \in X$, write $x=v+w$, where $v=P x$ is the projection of $x$ into $V$. Show that $w$ is orthogonal to $V$.
3. Let $f(x)$ be a $2 \pi$ periodic function. Use Fourier series to investigate finding $2 \pi$ periodic solutions of

$$
-u^{\prime \prime}(x)+u=f(x)
$$

so we want $u$ and all of its derivatives to be $2 \pi$ periodic.
This is routine - and short. Expand $f$ in a Fourier series, so $f(x)=\sum_{k=-\infty}^{\infty} a_{k} e^{i k x}$ and seek the solution as a Fourier series $u(x)=\sum_{k=-\infty}^{\infty} c_{k} e^{i k x}$. So all you need do is determine the $c_{k}$ 's in terms of the $a_{k}$ 's.
4. Consider the wave equation $u_{t t}=u_{x x}, 0 \leq x \leq \pi$ with the boundary conditions

$$
u(0, t)=0, \quad u(\pi, t)=0, \quad(t \geq 0)
$$

a) Find all solutions of the special form $u(x, t)=\phi(x) T(t)$ (standing wave solutions).
b) Use this to solve the wave equation with the above boundary conditions and the initial conditions

$$
u(x, 0)=2 \sin (3 x)-7 \sin (19 x), \quad u_{t}(x, 0)=0
$$

5. Consider the wave equation $u_{t t}=u_{x x}, 0 \leq x \leq \pi$ with the mixed boundary conditions

$$
u(0, t)=0, \quad \frac{\partial u}{\partial x}(\pi, t)=0, \quad(t \geq 0)
$$

a) Find all solutions of the special form $u(x, t)=\phi(x) T(t)$ (standing wave solutions).
b) Use this to solve the wave equation with the above boundary conditions and the initial conditions

$$
u(x, 0)=4 \sin (5 x / 2)-7 \sin (9 x / 2), \quad u_{t}(x, 0)=0
$$

6. LORENTZ TRANSFORMATIONS Let $u(x, t)$ be a given function. Find all linear changes of variable

$$
\tau=\alpha x+\beta t, \quad z=\gamma x+\delta t
$$

that keep the wave operator invariant, that is

$$
u_{t t}-c^{2} u_{x x}=u_{\tau \tau}-c^{2} u_{z z}
$$

SUGGESTION: You will be led to three equations for the four coefficients. Try to find a cleaner way to write these in terms of some other parameter. Here is a related example. Say $a, b, c$, and $d$ satisfy

$$
\begin{equation*}
a^{2}+b^{2}=1, \quad c^{2}+d^{2}=1, \quad a c+b d=0 \tag{1}
\end{equation*}
$$

In this example, try writing $a=\cos \theta$. Then $b= \pm \sin \theta$ etc and you'll get equations for the four coefficients in terms of the one parameter $\theta$ (with some choices for $\pm$ a few places?). Upshot, the equations (1) just describe a rotation (and possibly also a reflection) around the origin in the plane $\mathbb{R}^{2}$.
7. [Integration by Parts for Multiple Integrals] Let $u(x, y)$ be a scalar function and $\mathbf{F}(x, y)$ a vector field in a bounded region $\mathcal{D}$ in $\mathbb{R}^{2}$ and let the closed curve $C$ be the boundary of $\mathcal{D}$ with $\mathbf{N}$ be the unit outer normal vector field on this boundary.
a) Prove the identity $\nabla \cdot(u \mathbf{F})=\nabla u \cdot \mathbf{F}+u \nabla \cdot \mathbf{F}$. Compare this with the special case of a function of one variable.
b) Use the divergence theorem to obtain the following generalization of integration by parts for multiple integrals:

$$
\iint_{\mathcal{D}} u \nabla \cdot \mathbf{F} d A=\oint_{C} u \mathbf{F} \cdot \mathbf{N} d s-\iint_{\mathcal{D}} \nabla u \cdot \mathbf{F} d A .
$$

Notice that for a function of one variable with $\mathcal{D}$ being the interval $\{a<x<b\}$, this reduces precisely to the usual formula for integration by parts.
c) Generalize this formula to the case where $\mathcal{D}$ is a bounded (solid) region in three dimensional space.
d) One frequently uses this with $\mathbf{F}=\nabla v$. Show the above formula for integration by parts becomes (say in two dimensions)

$$
\iint_{\mathcal{D}} u \Delta v d A=\oint_{C} u \nabla v \cdot \mathbf{N} d s-\iint_{\mathcal{D}} \nabla u \cdot \nabla v d A
$$

To what does this reduce for functions on one variable?
e) As a short application using this, say $u(x, y)$ is a harmonic function in a bounded region $\mathcal{D}$, so $\nabla \cdot \nabla u=0$. One can think of $u(x, y)$ as being the equilibrium temperature of $\mathcal{D}$. Let $C$ is the boundary of $\mathcal{D}$. If $u=0$ on $C$, it is plausible that one must have $u(x, y)=0$ throughout $\mathcal{D}$. Show how this follows from the above formula. What is the analogous assertion for functions of one variable, where a harmonic function is just a solution of $u^{\prime \prime}=0$ ?

## Bonus Problem

1-B [FOURIER SERIES IN SEVERAL VARIABLES]. Fourier series extends immediately to functions of several variables. Let $T^{2}$ be the square $\left\{(x, y) \in \mathbb{R}^{2} \mid-\pi \leq x \leq \pi,-\pi \leq y \leq \pi\right\}$ and consider functions $f(x, y)$ that are $2 \pi$ periodic in both variables with the $L_{2}\left(T^{2}\right)$ inner product

$$
\langle f, g\rangle:=\iint_{T^{2}} f(x, y) \overline{g(x, y)} d x d y
$$

a) Show that the functions

$$
\varphi_{j k}:=e^{i(j x+k y)} \quad j, k=0, \pm 1, \pm 2, \ldots
$$

are orthogonal. How should you modify these to get orthonormal functions?
b) If $f(x, y)$ is $2 \pi$ periodic in both variables, use Fourier series to investigate finding periodic solutions $u(x, y)$ of

$$
-\Delta u(x, y)+u=f(x, y)
$$

[This is almost identical to Problem 3 above.]
c) If $f(x, y)$ is $2 \pi$ periodic in both variables, use Fourier series to investigate finding periodic solutions of

$$
-\Delta u(x, y)=f(x, y)
$$

[Last revised: February 23, 2011]

