Problem Set 4

DUE: In class Thursday, Feb. 17 Late papers will be accepted until 1:00 PM Friday.

1. Solve the wave equation $u_{t t}=c^{2} u_{x x}$ for the semi-infinite string $x \geq 0$ with the initial and boundary conditions

$$
u(x, 0)=3-\sin x, \quad u_{t}(x, 0)=0, \quad u(0, t)=3-t^{2}
$$

2. [Weinberger p. 27 \#3] Let $u(x, t)$ be a solution of the inhomogeneous wave equation $u_{t t}$ $c^{2} u_{x x}=\sin \pi x$ for $0<x<1, t>0$ with the boundary conditions $u(0, t)=0$ and $u(1, t)=0$.
a) Find the solution if $u(x, 0)=0$ and $u_{t}(x, 0)=0$.
b) Find the solution if $u(x, 0)=x(1-x)$ and $u_{t}(x, 0)=0$.
3. Let $u(x, t)$ be the temperature at time t at the point $x,-1 \leq x \leq 1$. Assume it satisfies the heat equation $u_{t}=u_{x x}$ for $0<t<\infty$ with the boundary condition $u(-1, t)=u(1, t)=0$ and initial condition $u(x, 0)=f(x)$.
a) Show that $E(t):=\frac{1}{2} \int_{-1}^{1} u^{2}(x, t) d x$ is a decreasing function of t.
b) Use this to prove uniqueness for the heat equation with these specified initial and boundary conditions.
c) If $u(x, 0)=f(x)$ is an even function of x, show that the temperature $u(x, t)$ at later times is also an even function of x

Bonus Problems

1-B [Generalization of \#3] Let $u(x, y, t)$ is a solution of the heat equation $u_{t}=\Delta u$ in a bounded region $\Omega \subset \mathbb{R}^{2}$. Here one has the initial condition $u(x, y, 0)=f(x, y)$ and boundary condition $u(x, y, t)=0$ at points (x, y) on the boundary, $\partial \Omega$ and define

$$
E(t):=\frac{1}{2} \iint_{\Omega} u^{2}(x, y, t) d x d y
$$

a) Generalize \#3(a)(b) to this setting.
b) If Ω is symmetric under refection across the y-axis, so $(x, y) \rightarrow(-x, y)$ and if the initial temperature is also symmetric, $f(x, y)=f(-x, y)$, show that $u(x, y, t)=u(-x, y, t)$ for all points in Ω and all $t>0$.
REMARK: If Ω is the unit disk, $\left\{x^{2}+y^{2}<1\right\}$ and $f(x, y)$ depends only the distance to the origin, $r:=\sqrt{x^{2}+y^{2}}$, the same reasoning shows that the solution u also depends only on r.
[Last revised: March 9, 2011]

