Problem Set 3

DUE: In class Thursday, Feb. 10 Late papers will be accepted until 1:00 PM Friday.

1. Solve $u_{x}+u_{y}+u=e^{x+2 y}$ with $u(x, 0)=0$.
2. Find the general solution of $u_{x y}=x^{2} y$ for the function $u(x, y)$.
3. Find the general solution of the inhomogeneous equation $u_{t t}-u_{x x}=1+2 x$ for the function $u(x, t)$, where $-\infty<x<\infty$ (an infinite string).
4. Solve the wave equation (for an infinite string) $u_{t t}=c^{2} u_{x x}$ with initial conditions $u(x, 0)=$ $\ln \left(1+x^{2}\right)$ and $u_{t}(x, 0)=4+x$.
5. [Weinberger, p. 17 \#3] A string of length $L=1$ with fixed end points is initially fixed in the position $u(x, 0)=\sin \pi x$ and is released at time $t=0$ (so its initial velocity is zero). Find its subsequent motion.
6. [THE DULCIMER] Solve the wave equation $u_{t t}=c^{2} u_{x x}$ with initial conditions $u(x, 0)=0$ and $u_{t}(x, 0)=g(x)$, where $g(x)=1$ if $|x|<a$ and $g(x)=0$ for $|x| \geq a$. This corresponds to hitting the string with a hammer of width $2 a$. Draw sketches of snapshots of the string (i.e., plot u versus x) for $t=\frac{1}{2} a / c, t=a / c, t=\frac{3}{2} a / c, t=2 a / c$ and $t=\frac{5}{2} a / c$.
7. On the bounded interval $0 \leq x \leq L$, let $u(x, t)$ be a solution of the wave equation for a vibrating string: $u_{t t}=u_{x x}$. Define the "Energy" by

$$
\begin{equation*}
E(t):=\frac{1}{2} \int_{0}^{L}\left[u_{t}^{2}+u_{x}^{2}\right] d x . \tag{1}
\end{equation*}
$$

Assume u satisfies the boundary conditions $u(0, t)=0$ and $u(L, t)=0$.
a) Show that $E(t)$ is a constant, so energy is conserved.
b) [Uniqueness] Say the two functions $v(x, t)$ and $w(x, t)$ both satisfy the wave equation and boundary conditions and also have the same initial position and velocity:

$$
v(x, 0)=w(x, 0) \quad v_{t}(x, 0)=w_{t}(x, 0) .
$$

Show that $v(x, t)=w(x, t)$ for all $0 \leq x \leq L, t \geq 0$.
8. Take a moment to review the divergence theorem from vector calculus, then work the following problem:
Suppose $V(x, y, z)$ is a vector-valued function defined everywhere in 3-dimensional space. Further, suppose that V is differentiable and that

$$
\|V(x, y, z)\| \leq \frac{1}{1+\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

for all (x, y, z). Show that

$$
\begin{equation*}
\iiint_{\mathbb{R}^{3}} \nabla \cdot V(x, y, z) d x d y d z=0 . \tag{2}
\end{equation*}
$$

Remark Let $B(0, R)$ be the ball of radius R centered at the origin. Then (2) means that

$$
\lim _{R \rightarrow \infty} \iiint_{B(0, R)} \nabla \cdot V(x, y, z) d x d y d z=0
$$

Bonus Problems (Due Feb. 10)

1-B WAVE EQUATION wITH FRICTION If there is friction, the wave equation becomes

$$
u_{t t}+b u_{t}=u_{x x}, \quad \text { where } \quad b \geq 0 .
$$

Consider a string of length L whose ends are fixed: $u(0, t)=0$ and $u(L, t)=0$ for all $t \geq 0$. Define the energy using (1).
a) Show that $d E / d t \leq 0$.
b) Use this to show that the uniquness assertion in problem 7 b) of the previous problem is still true.

2-B Solve $u_{x x}+u_{x t}-20 u_{t t}=0$ with initial conditions $u(x, 0)=\varphi(x)$, and $u_{t}(x, 0)=\psi(x)$.
[Last revised: February 11, 2011]

