Problem Set 2

DUE: In class Thursday, Feb. 3 Late papers will be accepted until 1:00 PM Friday.

1. Find the solution $U(t):=\left(u_{1}(t), u_{2}(t)\right)$ of

$$
\begin{aligned}
u_{1}^{\prime} & =u_{1} \\
u_{2}^{\prime} & =u_{1}-u_{2}
\end{aligned}
$$

with the initial conditions $U(0)=\left(u_{1}(0), u_{2}(0)\right)=(10)$.
2. Find the solution $U(t)$ of

$$
\begin{aligned}
& u_{1}^{\prime}=2 u_{1}-u_{2} \\
& u_{2}^{\prime}=3 u_{1}-2 u_{2}
\end{aligned}
$$

with $U(0)=(0,1)$.
3. By only a slight modification of your solution of the previous problem, find the general solution of

$$
\begin{aligned}
& u_{1}^{\prime \prime}=2 u_{1}-u_{2} \\
& u_{2}^{\prime \prime}=3 u_{1}-2 u_{2}
\end{aligned}
$$

4. One simple model of a diatomic molecule is of masses m and M connected by a spring with spring constant k so the equations of motion are

$$
\begin{aligned}
m u_{1}^{\prime \prime} & =k\left(u_{2}-u_{1}\right) \\
M u_{2}^{\prime \prime} & =k\left(u_{1}-u_{2}\right)
\end{aligned}
$$

Solve these equations by finding the normal modes of oscillation. Interpret your results with a diagram.
5. a) Find the solution $u(x, y)$ of $u_{x}+3 u_{y}-u=0$ with $u(0, y)=1+y^{2}$.
b) Find the solution $v(x, y)$ of $v_{x}+3 v_{y}-v=1$ with $v(0, y)=1+y^{2}$.
[Last revised: January 29, 2011]

