Problem Set 10

Due: Thursday April 14 [Late papers will be accepted until 1:00 PM Friday].

1. This problem is to help with a computation in class today (Thursday) finding a formula for a particular solution of the inhomogeneous heat equation using an idea due to Duhamel.
a) If $f(x, r)$ is a smooth function of the real variables t, r, let

$$
H(t, r):=\int_{0}^{t} f(x, r) d x
$$

Compute $H_{t}(t, r)$ and $H_{r}(t, r)$.
b) Let $K(t):=H(t, t)$. Use the chain rule to compute $d K / d t$.
2. a) Let A be a positive definite $n \times n$ real matrix, $b \in \mathbb{R}^{n}$, and consider the quadratic polynomial

$$
Q(x):=\frac{1}{2}\langle x, A x\rangle-\langle b, x\rangle .
$$

Show that Q is bounded below, that is, there is a constant m so that $Q(x) \geq m$ for all $x \in \mathbb{R}^{n}$.
b) If $x_{0} \in \mathbb{R}^{n}$ minimizes Q, show that $A x_{0}=b$. [Moral: One way to solve $A x=b$ is to minimize Q.]
c) Let $\Omega \in \mathbb{R}^{n}$ be a bounded region with smooth boundary and $F(x)$ a bounded continuous function. Also, let S be the set of smooth functions $u(x)$ on Ω that are zero on the boundary, $u(x)=0$ for all $x \in \partial \Omega$. Define

$$
J(u):=\iint_{\Omega}\left[\frac{1}{2}|\nabla u|^{2}+F(x) u\right] d x .
$$

If $u_{0}(x) \in \mathcal{S}$ minimizes $J(u)$ for all $u \in \mathcal{S}$, show that $\Delta u_{0}=F$ in Ω - and of course $u_{0}=0$ on $\partial \Omega$. [Moral: One way to solve $\Delta u=F$ with $u=0$ on $\partial \Omega$ is to seek a function in \mathcal{S} that mimimizes $J(u)$.]
3. Find a formula for the solution of $u_{t}=u_{x x}-u, x \in \mathbb{R}$ with initial conditions $u(x, 0)=f(x)$ in two ways:
a) Using Fourier Transforms.
b) Using the procedure of Problem Set 9 \#1.
4. Let $g_{\lambda}(\theta)$ be a continuous 2π periodic function of θ depending of the real parameter $\lambda>0$ with the properties
a). $g_{\lambda}(\theta) \geq 0$,
b). $\int_{-\pi}^{\pi} g_{\lambda}(\theta) d \theta=1$,
c). For any $\delta>0, \quad \lim _{\lambda \backslash 0} \int_{S_{\delta}} g_{\lambda}(\theta) d \theta=0$,
where S_{δ} is the circle $\{-\pi \leq \theta \leq \pi\}$ with the interval $\{|\theta| \leq \delta\}$ excluded. An simple example is $g_{\lambda}(t):=g(t / \lambda) / \lambda$ (for $0<\lambda \leq 1$), where

$$
g(t)= \begin{cases}1-|t| & \text { for }|t|<1 \\ 0 & \text { for } 1 \leq|t| \leq \pi\end{cases}
$$

and extended to \mathbb{R} as a 2π periodic function.
If $f(\theta)$ is any continuous 2π periodic function, define

$$
f_{\lambda}(\theta):=\int_{-\pi}^{\pi} f(\phi) g_{\lambda}(\theta-\phi) d \phi
$$

Show that for any θ :

$$
\lim _{\lambda \searrow 0} f_{\lambda}(\theta) \rightarrow f(\theta) .
$$

Better yet, $\max _{\theta \in[-\pi, \pi]}\left|f_{\lambda}(\theta)-f(\theta)\right| \rightarrow 0$.
REMARK: The most important special case of this is Poisson's formula for the solution of $\Delta u=0$ in the unit disk with boundary value $u(1, \theta)=f(\theta)$. Here with $\lambda=1-r$ we have

$$
g_{\lambda}(\theta):=\frac{1-r^{2}}{2 \pi\left(1-2 r \cos \theta+r^{2}\right)}
$$

Bonus Problem

1-B This problem constructs some smooth functions that are useful when working with partial differential equations.
a) For any integer $n \geq 0$, show that $\lim _{x \searrow 0} \frac{e^{-1 / x}}{x^{n}}=0$.
b) Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}e^{-\frac{1}{x}} & \text { for } x>0 \\ 0 & \text { for } x \leq 0\end{cases}
$$

Sketch the graph of f.
c) Show that f is a smooth function for all real x.
d) Show that each of the following are smooth and sketch their graphs:

$$
\left.\begin{array}{rlrl}
g(x) & =f(x) f(1-x) & & h(x)
\end{array}=\frac{f(x)}{f(x)+f(1-x)}, \begin{array}{l}
k(x)
\end{array}\right)=k(x+2), ~(x)=h(x) h(4-x) \quad \Phi(x)=K(\|x\|), x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
$$

[Last revised: April 10, 2011]

