Problem Set 10

DUE: Thursday April 14 [Late papers will be accepted until 1:00 PM Friday].

- 1. This problem is to help with a computation in class today (Thursday) finding a formula for a particular solution of the inhomogeneous heat equation using an idea due to Duhamel.
 - a) If f(x,r) is a smooth function of the real variables t, r, let

$$H(t,r) := \int_0^t f(x,r) \, dx.$$

Compute $H_t(t,r)$ and $H_r(t,r)$.

- b) Let K(t) := H(t,t). Use the chain rule to compute dK/dt.
- 2. a) Let A be a positive definite $n \times n$ real matrix, $b \in \mathbb{R}^n$, and consider the quadratic polynomial

$$Q(x) := \frac{1}{2} \langle x, Ax \rangle - \langle b, x \rangle.$$

Show that Q is bounded below, that is, there is a constant m so that $Q(x) \ge m$ for all $x \in \mathbb{R}^n$.

- b) If $x_0 \in \mathbb{R}^n$ minimizes Q, show that $Ax_0 = b$. [Moral: One way to solve Ax = b is to minimize Q.]
- c) Let $\Omega \in \mathbb{R}^n$ be a bounded region with smooth boundary and F(x) a bounded continuous function. Also, let S be the set of smooth functions u(x) on Ω that are zero on the boundary, u(x) = 0 for all $x \in \partial \Omega$. Define

$$J(u) := \iint_{\Omega} \left[\frac{1}{2} |\nabla u|^2 + F(x)u\right] dx.$$

If $u_0(x) \in S$ minimizes J(u) for all $u \in S$, show that $\Delta u_0 = F$ in Ω – and of course $u_0 = 0$ on $\partial \Omega$. [Moral: One way to solve $\Delta u = F$ with u = 0 on $\partial \Omega$ is to seek a function in S that minimizes J(u).]

- 3. Find a formula for the solution of $u_t = u_{xx} u$, $x \in \mathbb{R}$ with initial conditions u(x, 0) = f(x) in two ways:
 - a) Using Fourier Transforms.
 - b) Using the procedure of Problem Set 9 #1.
- 4. Let $g_{\lambda}(\theta)$ be a continuous 2π periodic function of θ depending of the real parameter $\lambda > 0$ with the properties

a).
$$g_{\lambda}(\theta) \ge 0$$
, b). $\int_{-\pi}^{\pi} g_{\lambda}(\theta) d\theta = 1$, c). For any $\delta > 0$, $\lim_{\lambda \searrow 0} \int_{S_{\delta}} g_{\lambda}(\theta) d\theta = 0$,

where S_{δ} is the circle $\{-\pi \le \theta \le \pi\}$ with the interval $\{|\theta| \le \delta\}$ excluded. An simple example is $g_{\lambda}(t) := g(t/\lambda)/\lambda$ (for $0 < \lambda \le 1$), where

$$g(t) = \begin{cases} 1 - |t| & \text{ for } |t| < 1\\ 0 & \text{ for } 1 \le |t| \le \pi \end{cases}$$

and extended to \mathbb{R} as a 2π periodic function.

If $f(\theta)$ is any continuous 2π periodic function, define

$$f_{\lambda}(\mathbf{\theta}) := \int_{-\pi}^{\pi} f(\mathbf{\phi}) g_{\lambda}(\mathbf{\theta} - \mathbf{\phi}) d\mathbf{\phi}.$$

Show that for any θ :

$$\lim_{\lambda \searrow 0} f_{\lambda}(\theta) \to f(\theta).$$

Better yet, $\max_{\theta \in [-\pi,\pi]} |f_{\lambda}(\theta) - f(\theta)| \to 0.$

REMARK: The most important special case of this is Poisson's formula for the solution of $\Delta u = 0$ in the unit disk with boundary value $u(1, \theta) = f(\theta)$. Here with $\lambda = 1 - r$ we have

$$g_{\lambda}(\theta) := \frac{1-r^2}{2\pi(1-2r\cos\theta+r^2)}$$

Bonus Problem

- 1-B This problem constructs some smooth functions that are useful when working with partial differential equations.
 - a) For any integer $n \ge 0$, show that $\lim_{x \searrow 0} \frac{e^{-1/x}}{x^n} = 0$.
 - b) Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} e^{-\frac{1}{x}} & \text{for } x > 0, \\ 0 & \text{for } x \le 0, \end{cases}$$

Sketch the graph of f.

- c) Show that f is a smooth function for all real x.
- d) Show that each of the following are smooth and sketch their graphs:

$$g(x) = f(x)f(1-x) h(x) = \frac{f(x)}{f(x) + f(1-x)} k(x) = h(x)h(4-x) K(x) = k(x+2), \varphi(x,y) = K(x)K(y), (x,y) \in \mathbb{R}^2 \Phi(x) = K(||x||), x = (x_1, x_2) \in \mathbb{R}^2$$

[Last revised: April 10, 2011]