Problem Set 0 [Rust Remover]

DuE: Never.

1. Let $u(t)$ be the amount of a radioactive element at time t and say initially, $u(0)=A$. The rate of decay is proportional to the amount present, so

$$
\frac{d u}{d t}=c u(t)
$$

where the constant c determines the decay rate. The half-life T is the amount of time for half of the element to decay, so $u(T)=\frac{1}{2} u(0)$. Find c in terms of T and obtain a formula for $u(t)$ in terms of T.
2. Let $\int_{0}^{x} f(t) d t=e^{\cos (3 x+1)}+A$, where f is some continuous function. Find f and the constant A.
3. Say $w(t)$ satisfies the differential equation

$$
\begin{equation*}
a w^{\prime \prime}(t)+b w^{\prime}+c w(t)=0 \tag{1}
\end{equation*}
$$

where a and c, are positive constants and $b \geq 0$. Let $E(t)=\frac{1}{2}\left[a w^{\prime 2}+c w^{2}\right]$.
a) Without solving the differential equation, show that $E^{\prime}(t) \leq 0$.
b) Use this to show that If you also know that $w(0)=0$ and $w^{\prime}(0)=0$, then $w(t)=0$ for all $t \geq 0$.
c) [Uniqueness] Say the functions $u(t)$ and $v(t)$ both satisfy the same equation (1) and also $u(0)=v(0)$ and $u^{\prime}(0)=v^{\prime}(0)$. Show that $u(t)=v(t)$ for all $t \geq 0$.
4. Say $u(x, y)$ has the property that $\frac{\partial u}{\partial y}=0$ for all points (x, y) and that $u(x, 0)=\sin 3 x$. Find $u(x, y)$.
What if instead u satisfies $\frac{\partial u}{\partial y}=2 x y$?
5. A function $u(x, y)$ satisfies $u_{x}+3 u_{y}=0$. Find a change of variables

$$
\begin{aligned}
& x=a s+b t \\
& y=c s+d t
\end{aligned}
$$

so that in the new (s, t) variables u satisfies $\frac{\partial u}{\partial s}=0$.
[Last revised: January 15, 2011]

