PDE: Linear Change of Variable

Let $x:=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a point in \mathbb{R}^{n} and consider the second order linear partial differential operator

$$
\begin{equation*}
L u:=\sum_{i, j=1}^{n} a_{i j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}, \tag{1}
\end{equation*}
$$

where the coefficient matrix $A:=\left(a_{i j}\right)$ is constant. Since for functions whose second derivatives are continuous we know that

$$
\frac{\partial}{\partial x_{i}}\left(\frac{\partial}{\partial x_{j}}\right)=\frac{\partial}{\partial x_{j}}\left(\frac{\partial}{\partial x_{i}}\right)
$$

we may (and will) assume that A is a symmetric matrix: $A=A^{*}$.
In these brief notes we obtain a useful formula for how L changes if we make the linear change of variable $y=S x$ where $\left(S:=s_{k \ell}\right)$ is a constant matrix. Written in coordinates this means that

$$
y_{k}=\sum_{\ell=1}^{n} s_{k \ell} x_{\ell}, \quad \text { where } \quad k=1, \ldots, n
$$

First Goal: Compute L in these new y coordinates. This is straightforward (even boring) if you
just keep calm and don't make copying errors. By the chain rule

$$
\begin{equation*}
\frac{\partial u}{\partial x_{j}}=\sum_{k=1}^{n} \frac{\partial u}{\partial y_{k}} \frac{\partial y_{k}}{\partial x_{i}}=\sum_{k=1}^{n} \frac{\partial u}{\partial y_{k}} s_{k i} . \tag{2}
\end{equation*}
$$

We repeat this process to compute the second derivatives:
$\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}=\frac{\partial}{\partial x_{i}}\left(\frac{\partial u}{\partial x_{j}}\right)=\sum_{\ell=1}^{n} \frac{\partial}{\partial y_{\ell}}(\quad) \frac{\partial y_{\ell}}{\partial x_{j}}=\sum_{\ell=1}^{n} \frac{\partial}{\partial y_{\ell}}(\quad) s_{\ell j}$,
so using (2)

$$
\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}=\sum_{\ell=1}^{n} \frac{\partial}{\partial y_{\ell}}\left(\sum_{k=1}^{n} \frac{\partial u}{\partial y_{k}} s_{k i}\right) s_{\ell j}=\sum_{k, \ell=1}^{n} \frac{\partial^{2} u}{\partial y_{k} \partial y_{\ell}} s_{k i} s_{\ell j}
$$

Consequently

$$
L u=\sum_{i, j=1}^{n} a_{i, j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}=\sum_{k, \ell=1}^{n}\left[\sum_{i, j=1}^{n} a_{i, j} s_{k i} s_{\ell j}\right] \frac{\partial^{2} u}{\partial y_{k} \partial y_{\ell}}
$$

so

$$
\begin{equation*}
L u=\sum_{k, \ell=1}^{n} b_{k \ell} \frac{\partial^{2} u}{\partial y_{k} \partial y_{\ell}}, \tag{3}
\end{equation*}
$$

where the coefficient matrix $B:=\left(b_{k \ell}\right)$ is

$$
b_{k \ell}=\sum_{i, j=1}^{n} a_{i, j} s_{k i} s_{\ell j}
$$

In terms of matrices this simply says that

$$
\begin{equation*}
B=S A S^{*} \tag{4}
\end{equation*}
$$

Second Goal: Pick the matrix S defining the change of coordinates $y=S x$ to make (3) as simple as possible. We'll be able to make B into a diagonal matrix by diagonalizing A Since A is a symmetric matrix, there is an orthogonal matrix R that diagonalizes it (in \mathbb{R}^{n}, an orthogonal matrix is just the generalization of a rotation). Thus

$$
R^{-1} A R=\Lambda=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right)
$$

Thus $S=R \Lambda R^{-1}$. Since for an orthogonal matrix R we know that $R^{*}=R^{-1}$, is we let $S=R^{*}$, then $\Lambda=S A S^{*}$. Comparing with (4) we see that using this change of coordinates we have arranged that B is a diagonal matrix.
Consequently L has the much simpler form

$$
\begin{equation*}
L u=\lambda_{1} \frac{\partial^{2} u}{\partial y_{1}^{2}}+\lambda_{2} \frac{\partial^{2} u}{\partial y_{2}^{2}}+\cdots+\lambda_{n} \frac{\partial^{2} u}{\partial y_{n}^{2}} . \tag{5}
\end{equation*}
$$

We can make one further simplification. By stretching the coordinates to have the coefficients in (5) be either 1,0 , or -1 . For instance, if $\lambda_{1}>0$, replace y_{1} by the new stretched coordinate $z_{1}:=y_{1} / \sqrt{\lambda_{1}}$. As an example, using this device

$$
L u:=4 \frac{\partial^{2} u}{\partial y_{1}^{2}}-9 \frac{\partial^{2} u}{\partial y_{2}^{2}} \quad \text { becomes } \quad L u:=\frac{\partial^{2} u}{\partial z_{1}^{2}}-\frac{\partial^{2} u}{\partial z_{2}^{2}} .
$$

EXERCISE: Show that there is a linear change of variable so that at one point, say the origin, the second derrivative matrix

$$
\frac{\partial^{2} u}{\partial y_{k} \partial y_{\ell}}(0)
$$

is a diagonal matrix.

