Classical Examples of PDEs

Laplace equation:

$$
\Delta u:=\sum_{j=1}^{3} \frac{\partial^{2} u}{\partial x_{j}^{2}}=0 \quad\left(\text { some write } \Delta u=\nabla \cdot \nabla u=\nabla^{2} u\right)
$$

Poisson equation: $\quad-\Delta u=f(x)$
Helmholtz (or eigenvalue) equation: $\quad-\Delta u=\lambda u$
Transport equation: $\quad \frac{\partial u}{\partial t}=\sum_{j=1}^{3} b^{j} \frac{\partial u}{\partial x_{j}}$
Heat (or diffusion) equation: $\quad u_{t}-k \Delta u=0$
Schrödinger equation $\quad i u_{t}=-\Delta u+V(x) u$
Wave equation: $u_{t t}-c^{2} \Delta u=0$
Cauchy-Riemann equations: $\quad u_{x}=v_{y}, \quad u_{y}=-v_{x}$
Maxwell's equations in a vacuum:

$$
\mathbf{E}_{t}=c \nabla \times \mathbf{H}, \quad \mathbf{H}_{t}=-c \nabla \times \mathbf{E}, \quad \operatorname{div} \mathbf{H}=0, \quad \operatorname{div} \mathbf{E}=0
$$

Euler's (nonlinear) equations for incompressible inviscid flow:

$$
\mathbf{u}_{t}+\mathbf{u} \cdot \nabla \mathbf{u}=-\nabla p, \quad \operatorname{div} \mathbf{u}=0
$$

