Second order linear equations

Many traditional problems involving ordinary equations arise as second order linear equations

$$
a u^{\prime \prime}+b u^{\prime}+c u=f, \quad \text { more briefly as } \quad L u=f .
$$

The problem is, given f, find u; often we will want to find u that satisfies some auxiliary initial or boundary conditions.
Here we have used the notation

$$
\begin{equation*}
L u:=a(x) u^{\prime \prime}+b(x) u^{\prime}+c(x) u, \tag{1}
\end{equation*}
$$

so L takes a function u and gives a new function $L u$. This operator L is a linear map because it has the two properties

$$
L(\alpha u)=\alpha L u \quad \text { and } \quad L(u+v)=L u+L v,
$$

where α is any constant and u and v are functions. One consequence is that if $L u=0$ and $L v=0$, then $L(A u+B v)=0$ for any constants A and B. The solutiond of $L u=0$ are often called the nullspace or kernel of L. These properties show that the nullspace of a linear map is a linear space. For instance, in the special case where $L u=u^{\prime \prime}+u$ we know that $L \cos x=0$ and $L \sin x=0$. Thus $L(A \cos x+B \sin x)=0$ for any constants A and B.

Example We'll show that any solution of $L u:=u^{\prime \prime}+u=0$ has the form

$$
u(x)=A \cos x+B \sin x .
$$

This will show that the nullspace of $L u:=u^{\prime \prime}+u=0$ has dimension two.
First we must pick the constants A and B. Letting $x=0$ we see that (if this is to work) $A=u(0)$. Similarly, taking the derivative we get $B=u^{\prime}(0)$. Let $v(x):=u(0) \cos x+u^{\prime}(0) \sin x$. Our task is to show that $u(x)=v(x)$. Equivalently, if we let $w(x):=u(x)-v(x)$, we must show that $w(x) \equiv 0$. A key observation motivating us is that by linearity, $w^{\prime \prime}+w=0$, and $w(0)=0, w^{\prime}(0)=0$.
Introduce the function

$$
E(x)=\frac{1}{2}\left[w^{\prime 2}+w^{2}\right] .
$$

Then since $w^{\prime \prime}=-w$,

$$
E^{\prime}(x)=w^{\prime} w^{\prime \prime}+w w^{\prime}=w^{\prime}(-w)+w w^{\prime}=0,
$$

so $E(x)=$ constant (in many physical examples, this is conservation of energy). But from $w(0)=0$ and $w^{\prime}(0)=0$ we find $E(0)=0$. Since $E(x)$ is a sum of squares, the only possibility is $w(x) \equiv 0$, as claimed.

This Example generalizes. Assuming $a(x) \neq 0$, the nullspace of (1) always has dimension 2. Let $\varphi(x)$ and $\psi(x)$ be the solutions of the homogeneous equation $L u=0$ with $\varphi(0)=1, \varphi^{\prime}(0)=0$, and $\psi(0)=0, \psi^{\prime}(0)=1$, then every solution of the homogeneous equation $L u=0$ has the form $u(x)=A \varphi(x)+B \psi(x)$ for some constants A and B. The proof, which we don't give, has two parts. The first is the existence of the solutions φ and ψ, the second is their uniqueness. While these proofs are not obvious, they are not killers.

For (1) - and other linear ordinary and partial differential equations, it is surprising that if one knows the general solution of the homogeneous equation $L u=0$ one can find an explicit formula for a particular solution of the inhomogeneous equation $L u=f$.
Based on our experience with the first order linear inhomogeneous equation $u^{\prime}+a u=f$ it is plausable to seek u in the form $u(x)=p(x) v(x)$ where $p(x)$ is chosen cleverly to make the equation for v simple to solve. We do this for $L u:=u^{\prime \prime}+u=f$ (the general case of (1) is then routine). Clearly

$$
u^{\prime}=p v^{\prime}+p^{\prime} v \quad \text { and } \quad u^{\prime \prime}=p v^{\prime \prime}+2 p^{\prime} v^{\prime}+p^{\prime \prime} v
$$

so

$$
L u=p v^{\prime \prime}+2 p^{\prime} v^{\prime}+\left(p^{\prime \prime}+p\right) v
$$

This clearly simplifies if we pick p as a solution of the homogeneous equation $p^{\prime \prime}+p=0$. But we know two solutions of this, $\cos x$ and $\sin x$. Which should we use? After some experimentation, Lagrange decided he should use both and instead sought u in the more general form

$$
\begin{equation*}
u=p v+q w \tag{2}
\end{equation*}
$$

where for our example $p(x)=\cos x$ and $q(x)=\sin x$. Now he had one equation, $f=L u=p v^{\prime \prime}+$ $2 p^{\prime} v^{\prime}+q w^{\prime \prime}+2 q^{\prime} w^{\prime}$ for the two unknowns, $v(x)$ and $w(x)$ so he could impose another condition. After some experimenting he imposed the condition

$$
\begin{equation*}
p v^{\prime}+q w^{\prime}=0 \tag{3}
\end{equation*}
$$

which resulted in the two linear equations:

$$
f=L u=p^{\prime} v^{\prime}+q^{\prime} w^{\prime} \quad \text { and } \quad 0=p v^{\prime}+q w^{\prime}
$$

that is,

$$
f=(-\sin x) v^{\prime}+(\cos x) w^{\prime} \quad \text { and } \quad 0=(\cos x) v^{\prime}+(\sin x) w^{\prime}
$$

He solved these for v^{\prime} and w^{\prime} :

$$
v^{\prime}(x)=-\sin x f(x) \quad \text { and } w^{\prime}(x)=\cos x f(x)
$$

Thus integrating and using (2), we obtain the simple formula for a particular solution, $u_{\text {part }}$, of the inhomogeneous equation $L u=f$:

$$
\begin{equation*}
u_{\mathrm{part}}(x)=\cos x \int_{0}^{x}-\sin s f(s) d s+\sin x \int_{0}^{x} \cos s f(s) d s=\int_{0}^{x} \sin (x-s) f(s) d s \tag{4}
\end{equation*}
$$

To get the general solution of the inhomogeneous equation we simply add the general solution of the homogeneous equation:

$$
u(x)=A \cos x+B \sin x+\int_{0}^{x} \sin (x-s) f(s) d s
$$

In honor of George Green we often write (4) in the symbolic form

$$
\begin{equation*}
u(x)=\int_{0}^{x} G(x, s) f(s) d s \tag{5}
\end{equation*}
$$

and call $G(x, s):=\sin (x-s)$ Green's function for the equation $L u=f$. The point is that (5) can be thought of as writing $u=L^{-1} f$ so we have a conceptually satisfying formula for the inverse operator L^{-1}.

Lagrange's procedure for finding the formula (4) for a particular solution of the inhomogeneous equation is called variation of parameters. The key step is to seek u in the form (2) with $L p=0$ and $L q=0$.
We now carry out the details for the general case of the general second order equation

$$
\begin{equation*}
L u:=u^{\prime \prime}+b(x) u^{\prime}+c(x) u=f(x) . \tag{6}
\end{equation*}
$$

Note that here the coefficient of $u^{\prime \prime}$ is 1 (if not, then divide by it).
Using equation (2) and the condition (3) he found that

$$
u^{\prime}=p^{\prime} v+q^{\prime} w, \quad \text { and } \quad u "=p^{\prime} v^{\prime}+q^{\prime} w^{\prime}+p^{\prime \prime} v+q^{\prime \prime} w
$$

Substitute these into the equation (6) for L. After a short computation that uses $L p=L q=0$, we get the simple formula

$$
\begin{equation*}
L u=p^{\prime} v^{\prime}+q^{\prime} w^{\prime} \tag{7}
\end{equation*}
$$

To solve $L u=f$ we thus need to find v and w that satisfy this and (3):

$$
\begin{aligned}
& p v^{\prime}+q w^{\prime}=0 \\
& p^{\prime} v^{\prime}+q^{\prime} w^{\prime}=f
\end{aligned}
$$

These are two linear equations for v^{\prime} and w^{\prime}. Their solution is

$$
v^{\prime}=\frac{-q f}{W} \quad \text { and } \quad w^{\prime}=\frac{p f}{W}
$$

where $W(x):=p q^{\prime}-p^{\prime} q$ (called the Wronskian of p and q). Integrating we find v and w - and thus from (2), a particular solution $u_{\text {part }}$

$$
\begin{equation*}
u_{\mathrm{part}}=p(x) \int_{0}^{x} \frac{-q(s) f(s)}{W(s)} d s+q(x) \int_{0}^{x} \frac{p(s) f(s)}{W(s)} d s=\int_{0}^{x} G(x, s) f(s) d s \tag{8}
\end{equation*}
$$

where

$$
G(x, s):=\frac{q(x) p(s)-p(x) q(s)}{W(s)}
$$

is Green's function for the problem. In the special case of u " $+u=f$ done earlier, $p(x)=\cos x$ and $q(x)=\sin x$ so $W(x)=1$ and $g(x, s)=\sin (x-s)$, just as in (4).

First order linear systems

Next consider the first order system of equations

$$
\begin{equation*}
L U:=U^{\prime}(x)+A(x) U(x)=F(x) \tag{9}
\end{equation*}
$$

where U and F are vectors with n components and $A(x)$ is an $n \times n$ matrix. We assume that both A and F depend continuously on x.
A typical problem is to seek a solution of (9) that satisfies some initial condition $U(0)=C$, where $C \in \mathbb{R}^{n}$ is a given vector. If $A(x)$ and $F(x)$ are both periodic with period P, another typical problem is to seek a periodic solution $U(x)$ [the simplest scalar example $u^{\prime}=1$ has no periodic solutions with any period - and shows that answering this question may involve some work].

The homogeneous equation

A general theorem, which we'll not prove (it is not a killer) is
Theorem 1 . Given any constant $C \in \mathbb{R}^{n}$, the homogeneous equation $L U=0$ has a unique solution satisfying $U(0)=C$.

Note that "has a unique solution" means the same as "has one and only one solution".
Let $e_{1}:=(1,0, \ldots, 0), e_{2}:=(0,1,0, \ldots, 0), \ldots, e_{n}:=(0,0, \ldots, 0,1)$ be the standard basis vectors in \mathbb{R}^{n}. It is useful to use the special solutions $\Phi_{1}(x), \ldots, \Phi_{n}(x)$ that satisfy the homogeneous equation $L \Phi_{j}(x)=0$ with $\Phi_{j}(0)=e_{j}$ and use them to construct the $n \times n$ matrix $\Phi(x)$ whose columns are the vectors $\Phi_{1}(x), \ldots, \Phi_{n}(x)$. Then Φ satisfies

$$
\Phi^{\prime}(x)+A(x) \Phi(x)=0, \quad \text { and the initial condition } \quad \Phi(0)=I
$$

This matrix $\Phi(x)$ is sometimes called the fundamental solution matrix.
EXAMPLE 1 Let

$$
U(x)=\binom{u_{1}(x)}{u_{2}(x)}, \quad A:=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right), \quad \text { and } \quad F(x)=\binom{f_{1}(x)}{f_{2}(x)}
$$

so the system of equations $L U:=U^{\prime}+A U=F$ is

$$
\begin{gather*}
u_{1}^{\prime}-u_{2}=f_{1} \\
u_{2}^{\prime}+u_{1}=f_{2} \tag{10}
\end{gather*}
$$

The vectors

$$
\Phi_{1}(x):=\binom{\cos x}{-\sin x}, \quad \Phi_{2}(x):=\binom{\sin x}{\cos x}
$$

both satisfy the homogeneous equation $L \Phi_{j}=0$ with initial conditions $\Phi_{1}(0)=e_{1}, \Phi_{2}(0)=e_{2}$, so the fundamental solution matrix is

$$
\Phi(x):=\left(\begin{array}{rr}
\cos x & \sin x \tag{11}\\
-\sin x & \cos x
\end{array}\right)
$$

The inhomogeneous equation

Next we show that if you know a fundamental matrix solution $\Phi(x)$ for the homogeneous equation, then you can find a formula for a particular solution of the inhomogeneous equation $L U=F$, that
is, $U^{\prime}+A U=F$. As before, seek U in the special form $U(x)=S(x) V(x)$, where $S(x)$ is an $n \times n$ matrix. The goal is to choose a clever S so the resulting differential equation for $V(x)$ is simple.
Clearly

$$
L U=S V^{\prime}+\left(S^{\prime}+A S\right) V
$$

This evidently simplifies dramatically if $S^{\prime}+A S=0$, so we let $S(x)=\Phi(x)$ be the fundamental matrix solution of the homogeneous equation $L \Phi=0$. Because $\Phi(0)=I$, we know that $S(x)$ is invertible, at lease for x near 0 (In fact, it is invertible for all x. We leave that for you).
The equation $L U=F$ is thus $S V^{\prime}=F$ so $V^{\prime}(x)=S^{-1}(x) F(x)$. Integrating this we can obtain the desired particular solution, $U_{\text {part }}$ of $L U=F$. Since we just want a particular solution, we can let $U_{\text {part }}(0)=0$, which implies $V(0)=0$. Thus the desired formula is:

$$
\begin{align*}
U_{\mathrm{part}}(x) & =S(x) V(x)=S(x)\left[V(0)+\int_{0}^{x} S^{-1}(s) F(s) d s\right] \tag{12}\\
& =\int_{0}^{x} S(x) S^{-1}(s) F(s) d s=\int_{0}^{x} G(x, t) F(s) d s \tag{13}
\end{align*}
$$

where $G(x, t):=S(x) S^{-1}(s)$ is Green's function for this problem.
EXAMPLE 1 (CONTINUED) We are now in a position to write a formula for a particular solution of $L U=F$ for Example 1 above. Then (11) is the fundamental matrix solution for the homogeneous equation, $S(x)=\Phi(x)$. Since this happens to be an orthogonal matrix, its inverse is just the transpose. Consequently

$$
\begin{align*}
G(x, s)=\Phi(x) \Phi^{-1}(s) & =\left(\begin{array}{rr}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right)\left(\begin{array}{rr}
\cos s & -\sin s \\
\sin s & \cos s
\end{array}\right) \tag{14}\\
& =\left(\begin{array}{rr}
\cos (x-s) & \sin (x-s) \\
-\sin (x-s) & \cos (x-s)
\end{array}\right) \tag{15}
\end{align*}
$$

Consequently

$$
U_{\text {part }}(x)=\int_{0}^{x}\left(\begin{array}{rr}
\cos (x-s) & \sin (x-s) \tag{16}\\
-\sin (x-s) & \cos (x-s)
\end{array}\right)\binom{f_{1}(s)}{f_{2}(s)} d s
$$

EXAMPLE 2 We can write any second order equation $u^{\prime \prime}+b u^{\prime}+c u=f$ as a first order system by letting $u_{1}(x)=u(x)$ and $u_{2}(x)=u^{\prime}(x)$. Then, using the differential equation,

$$
u_{1}^{\prime}=u_{2} \quad \text { and } \quad u_{2}^{\prime}=u^{\prime \prime}=-b u_{2}-c u_{1}+f
$$

that is,

$$
\binom{u_{1}(x)}{u_{2}(x)}^{\prime}+\left(\begin{array}{rr}
0 & -1 \\
c & b
\end{array}\right)\binom{u_{1}(x)}{u_{2}(x)}=\binom{0}{f(x)}
$$

In the special case of $u^{\prime \prime}+u=f$ we have $b=0$ and $c=1$ so the previous equation becomes

$$
\binom{u_{1}(x)}{u_{2}(x)}^{\prime}+\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\binom{u_{1}(x)}{u_{2}(x)}=\binom{0}{f(x)}
$$

which is exactly (10) with $f_{1}=0$ and $f_{2}=f$. Now (16) gives a formula for a particular solution of this inhomogeneous equation. It is

$$
\begin{aligned}
U_{\text {part }}(x) & =\int_{0}^{x}\left(\begin{array}{rr}
\cos (x-s) & \sin (x-s) \\
-\sin (x-s) & \cos (x-s)
\end{array}\right)\binom{0}{f(s)} d s \\
& =\int_{0}^{x}\binom{\sin (x-s)}{\cos (x-s)} f(s) d s
\end{aligned}
$$

Since $u_{1}(x)=u(x)$, this formula is exactly the same as (4) found earlier.

