
Linear ODE’s

Second order linear equations

Many traditional problems involving ordinary equations arise as second orderlinear equations

au′′ + bu′ + cu = f , more briefly as Lu = f .

The problem is, givenf , find u; often we will want to findu that satisfies some auxiliary initial or
boundary conditions.

Here we have used the notation

Lu := a(x)u′′ + b(x)u′ + c(x)u, (1)

so L takes a functionu and gives a new functionLu. This operatorL is alinear map because it has
the two properties

L(αu) = αLu and L(u+ v) = Lu+ Lv,

whereα is any constant andu andv are functions. One consequence is that ifLu = 0 andLv = 0,
then L(Au + Bv) = 0 for any constantsA and B . The solutiond ofLu = 0 are often called the
nullspace or kernel of L . These properties show thatthe nullspace of a linear map is a linear space.
For instance, in the special case whereLu = u′′ +u we know thatLcosx = 0 andLsinx = 0. Thus
L(Acosx+ Bsinx) = 0 for any constantsA andB .

EXAMPLE We’ll show thatany solution ofLu := u′′ + u = 0 has the form

u(x) = Acosx+ Bsinx.

This will show that the nullspace ofLu := u′′ + u = 0 hasdimension two.

First we must pick the constantsA and B . Letting x = 0 we see that (if this is to work)A = u(0) .
Similarly, taking the derivative we getB = u′(0) . Let v(x) := u(0)cosx+ u′(0)sinx . Our task is to
show thatu(x) = v(x) . Equivalently, if we letw(x) := u(x)− v(x) , we must show thatw(x) ≡ 0. A
key observation motivating us is that by linearity,w′′ + w = 0, andw(0) = 0, w′(0) = 0.

Introduce the function

E(x) =
1
2
[w′2 + w2].

Then sincew′′ = −w ,
E ′(x) = w′w′′ + ww′ = w′(−w)+ ww′ = 0,

so E(x) = constant (in many physical examples, this isconservation of energy). But from w(0) = 0
and w′(0) = 0 we findE(0) = 0. SinceE(x) is a sum of squares, the only possibility isw(x) ≡ 0,
as claimed.

This Example generalizes. Assuminga(x) 6= 0, the nullspace of (1) always has dimension 2. Let
ϕ(x) and ψ(x) be the solutions of the homogeneous equationLu = 0 with ϕ(0) = 1, ϕ′(0) = 0,
and ψ(0) = 0, ψ′(0) = 1, then every solution of the homogeneous equationLu = 0 has the form
u(x) = Aϕ(x)+Bψ(x) for some constantsA andB . The proof, which we don’t give, has two parts.
The first is theexistence of the solutionsϕ and ψ , the second is their uniqueness. While these
proofs are not obvious, they are not killers.
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For (1) – and other linear ordinary and partial differentialequations, it is surprising that if one
knows the general solution of the homogeneous equationLu = 0 one can find anexplicit formula
for a particular solution of the inhomogeneous equationLu = f .
Based on our experience with the first order linear inhomogeneous equationu′+au = f it is plaus-
able to seeku in the form u(x) = p(x)v(x) where p(x) is chosen cleverly to make the equation for
v simple to solve. We do this forLu := u′′ + u = f (the general case of (1) is then routine). Clearly

u′ = pv′ + p′v and u′′ = pv′′ +2p′v′ + p′′v

so
Lu = pv′′ +2p′v′ +(p′′ + p)v.

This clearly simplifies if we pickp as a solution of the homogeneous equationp′′ + p = 0. But we
know two solutions of this, cosx and sinx . Which should we use? After some experimentation,
Lagrange decided he should useboth and instead soughtu in the more general form

u = pv+ qw, (2)

where for our examplep(x) = cosx and q(x) = sinx . Now he had one equation,f = Lu = pv′′ +
2p′v′ + qw′′ + 2q′w′ for the two unknowns,v(x) and w(x) so he could impose another condition.
After some experimenting he imposed the condition

pv′ + qw′ = 0, (3)

which resulted in the two linear equations:

f = Lu = p′v′ + q′w′ and 0= pv′ + qw′
,

that is,
f = (−sinx)v′ +(cosx)w′ and 0= (cosx)v′ +(sinx)w′

.

He solved these forv′ andw′ :

v′(x) = −sinx f (x) andw′(x) = cosx f (x).

Thus integrating and using (2), we obtain the simple formulafor a particular solution,upart, of the
inhomogeneous equationLu = f :

upart(x) = cosx
Z x

0
−sins f (s)ds+sinx

Z x

0
coss f (s)ds =

Z x

0
sin(x− s) f (s)ds (4)

To get thegeneral solution of the inhomogeneous equation we simply add the general solution of
the homogeneous equation:

u(x) = Acosx+ Bsinx+

Z x

0
sin(x− s) f (s)ds.

In honor of George Green we often write (4) in the symbolic form

u(x) =

Z x

0
G(x,s) f (s)ds (5)
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and callG(x,s) := sin(x− s) Green’s function for the equationLu = f . The point is that (5) can
be thought of as writingu = L−1 f so we have a conceptually satisfying formula for the inverse
operatorL−1 .

Lagrange’s procedure for finding the formula (4) for a particular solution of the inhomogeneous
equation is calledvariation of parameters. The key step is to seeku in the form (2) withLp = 0
andLq = 0.
We now carry out the details for the general case of the general second order equation

Lu := u′′ + b(x)u′ + c(x)u = f (x). (6)

Note that here the coefficient ofu′′ is 1 (if not, then divide by it).

Using equation (2)and the condition (3) he found that

u′ = p′v+ q′w, and u” = p′v′ + q′w′+ p”v+ q”w.

Substitute these into the equation (6) forL . After a short computation that usesLp = Lq = 0, we
get the simple formula

Lu = p′v′ + q′w′
. (7)

To solveLu = f we thus need to findv and w that satisfy this and (3):

pv′ + qw′ = 0

p′v′ + q′w′ = f .

These are two linear equations forv′ and w′ . Their solution is

v′ =
−q f
W

and w′ =
p f
W

,

whereW (x) := pq′− p′q (called theWronskian of p and q). Integrating we findv and w – and
thus from (2), a particular solutionupart

upart = p(x)
Z x

0

−q(s) f (s)
W (s)

ds+ q(x)
Z x

0

p(s) f (s)
W (s)

ds =

Z x

0
G(x,s) f (s)ds, (8)

where

G(x,s) :=
q(x)p(s)− p(x)q(s)

W (s)

is Green’s function for the problem. In the special case ofu” +u = f done earlier,p(x) = cosx and
q(x) = sinx soW (x) = 1 andg(x,s) = sin(x− s) , just as in (4).

First order linear systems

Next consider the first order system of equations

LU := U ′(x)+ A(x)U(x) = F(x), (9)
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whereU and F are vectors withn components andA(x) is an n×n matrix. We assume that both
A andF depend continuously onx .

A typical problem is to seek a solution of (9) that satisfies some initial condition U(0) = C , where
C ∈R

n is a given vector. IfA(x) andF(x) are both periodic with periodP, another typical problem
is to seek a periodic solutionU(x) [the simplest scalar exampleu′ = 1 has no periodic solutions –
with any period – and shows that answering this question may involve some work].

The homogeneous equation

A general theorem, which we’ll not prove (it is not a killer) is

Theorem 1 . Given any constant C ∈R
n , the homogeneous equation LU = 0 has a unique solution

satisfying U(0) = C.

Note that “has a unique solution” means the same as “has one and only one solution”.

Let e1 := (1,0, . . . ,0) , e2 := (0,1,0, . . . ,0) , . . . , en := (0,0, . . . ,0,1) be the standard basis vectors in
R

n . It is useful to use the special solutionsΦ1(x) ,. . . , Φn(x) that satisfy the homogeneous equation
LΦ j(x) = 0 with Φ j(0) = e j and use them to construct then×n matrix Φ(x) whose columns are
the vectorsΦ1(x) ,. . . ,Φn(x) . ThenΦ satisfies

Φ′(x)+ A(x)Φ(x) = 0, and the initial condition Φ(0) = I.

This matrix Φ(x) is sometimes called thefundamental solution matrix.

EXAMPLE 1 Let

U(x) =

(

u1(x)
u2(x)

)

, A :=

(

0 −1
1 0

)

, and F(x) =

(

f1(x)
f2(x)

)

,

so the system of equationsLU := U ′ + AU = F is

u′1−u2 = f1
u′2 + u1 = f2.

(10)

The vectors

Φ1(x) :=

(

cosx
−sinx

)

, Φ2(x) :=

(

sinx
cosx

)

both satisfy the homogeneous equationLΦ j = 0 with initial conditionsΦ1(0) = e1 , Φ2(0) = e2 ,
so the fundamental solution matrix is

Φ(x) :=

(

cosx sinx
−sinx cosx

)

(11)

The inhomogeneous equation

Next we show that if you know a fundamental matrix solutionΦ(x) for the homogeneous equation,
then you can find a formula for a particular solution of the inhomogeneous equationLU = F , that
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is, U ′ + AU = F . As before, seekU in the special formU(x) = S(x)V (x) , whereS(x) is an n×n
matrix. The goal is to choose a cleverS so the resulting differential equation forV (x) is simple.
Clearly

LU = SV ′ +(S′+ AS)V.

This evidently simplifies dramatically ifS′ + AS = 0, so we letS(x) = Φ(x) be the fundamental
matrix solution of the homogeneous equationLΦ = 0. BecauseΦ(0) = I , we know thatS(x) is
invertible, at lease forx near 0 (In fact, it is invertible for allx . We leave that for you).
The equationLU = F is thusSV ′ = F so V ′(x) = S−1(x)F(x) . Integrating this we can obtain the
desired particular solution,Upart of LU = F . Since we just want a particular solution, we can let
Upart(0) = 0, which impliesV (0) = 0. Thus the desired formula is:

Upart(x) =S(x)V (x) = S(x)

[

V (0)+

Z x

0
S−1(s)F(s)ds

]

(12)

=
Z x

0
S(x)S−1(s)F(s)ds =

Z x

0
G(x, t)F(s)ds, (13)

whereG(x, t) := S(x)S−1(s) is Green’s function for this problem.

EXAMPLE 1 (CONTINUED) We are now in a position to write a formula for a particular solution
of LU = F for Example 1 above. Then (11) is the fundamental matrix solution for the homoge-
neous equation,S(x) = Φ(x) . Since this happens to be an orthogonal matrix, its inverse is just the
transpose. Consequently

G(x,s) = Φ(x)Φ−1(s) =

(

cosx sinx
−sinx cosx

)(

coss −sins
sins coss

)

(14)

=

(

cos(x− s) sin(x− s)
−sin(x− s) cos(x− s)

)

. (15)

Consequently

Upart(x) =
Z x

0

(

cos(x− s) sin(x− s)
−sin(x− s) cos(x− s)

)(

f1(s)
f2(s)

)

ds, (16)

EXAMPLE 2 We can write any second order equationu′′ + bu′ + cu = f as a first order system by
letting u1(x) = u(x) andu2(x) = u′(x) . Then, using the differential equation,

u′1 = u2 and u′2 = u′′ = −bu2− cu1 + f .

that is,
(

u1(x)
u2(x)

)′

+

(

0 −1
c b

)(

u1(x)
u2(x)

)

=

(

0
f (x)

)

In the special case ofu′′ + u = f we haveb = 0 andc = 1 so the previous equation becomes

(

u1(x)
u2(x)

)′

+

(

0 −1
1 0

)(

u1(x)
u2(x)

)

=

(

0
f (x)

)

,
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which is exactly (10) withf1 = 0 and f2 = f . Now (16) gives a formula for a particular solution of
this inhomogeneous equation. It is

Upart(x) =
Z x

0

(

cos(x− s) sin(x− s)
−sin(x− s) cos(x− s)

)(

0
f (s)

)

ds

=
Z x

0

(

sin(x− s)
cos(x− s)

)

f (s)ds

Sinceu1(x) = u(x) , this formula is exactly the same as (4) found earlier.
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