Inner Product Summary

This is a summary of some items from class on Tues, Feb. 15, 2011.

SETting: Linear spaces X, Y with inner products \langle,\rangle_{X} and \langle,\rangle_{Y}.
Example: $X=\mathbb{R}^{4}$ and $Y=\mathbb{R}^{7}$.
Vectors $x, z \in X$ are orthogonal if $\langle x, z\rangle_{X}=0$.
Let $L: X \rightarrow Y$ be a linear map. Then the adjoint map $L^{*}: Y \rightarrow X$ is defined by the property

$$
\langle L x, y\rangle_{Y}=\left\langle x, L^{*} y\right\rangle_{X} \quad \text { for all } \quad x \in X, y \in Y
$$

Observation: $(L M)^{*}=M^{*} L^{*}$.
For real matrices, the adjoint is just the transpose. For complex matrices, it is complex conjugate transpose. Instead of writing \langle,\rangle_{X} etc, we'll write \langle,$\rangle since the inner$ product being used will be obvious.
In $L_{2}(a, b)$ on functions f with $f(a)=0$ and $f(b)=0$, if $L:=$ $\frac{d}{d x}$, then $L^{*}=-\frac{d}{d x}$. If one ignores the boundary conditions (that is, forget the boundary terms when integrating by parts), one gets the formal adjoint.

Projection and Orthogonal Decomposition. Let $V \subset X$ be a linear subspace. If $x \in X$, write

$$
x=v+z, \quad \text { where } \quad v \in V, \quad z \perp V
$$

We write $v=P_{V} x$ and call it the orthogonal projection of x into $V . P: X \rightarrow X$ is a linear map that satisfies $P^{2}=P$ and $P=P^{*}$. Note that $z=x-v=\left(I-P_{v}\right) x$. Also $\|x\|^{2}=\|v\|^{2}+\|z\|^{2}$. Let $e_{1}, e_{2}, \ldots e_{N}$ be an orthonormal basis for V (this assumes V is finite dimensional). then any $x \in V$ can be written (uniquely) as

$$
x=a_{1} e_{1}+\cdots+a_{N} e_{N}, \quad \text { where } \quad a_{k}=\left\langle x, e_{k}\right\rangle
$$

Consequently for any $x \in X$, we have

$$
P_{v} x=a_{1} e_{1}+\cdots+a_{N} e_{N}, \quad \text { where } \quad a_{k}=\left\langle x, e_{k}\right\rangle
$$

and the Pythagorean formula

$$
\left\|P_{\nu} x\right\|^{2}=\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}+\cdots+\left|a_{N}\right|^{2}
$$

EXAMPLE: $X=\mathbb{R}^{3}$, and we write $x=\left(x_{1}, x_{2}, x_{3}\right)$, an example with V points of the form $V=\left(x_{1}, 0, x_{3}\right)$ is $P_{V} x=\left(x_{1}, 0, x_{3}\right)$.

Example: Fourier Series Here $X=L_{2}(-\pi, \pi)$,

$$
V_{N}=\operatorname{span}\{1, \cos x, \cos 2 x, \ldots, \cos N x, \sin x, \ldots, \sin N x\} .
$$

An orthonormal basis is:
$e_{0}:=\frac{1}{\sqrt{2 \pi}}, e_{1}:=\frac{\cos x}{\sqrt{\pi}}, \ldots, e_{N}:=\frac{\cos N x}{\sqrt{\pi}}, \varepsilon_{1}:=\frac{\sin x}{\sqrt{\pi}}, \ldots, \varepsilon_{N}:=\frac{\sin N x}{\sqrt{\pi}}$.
We want to write the projection of $f(x)$ into V_{N}, so

$$
\begin{aligned}
P_{V_{N}} f(x) & =a_{0} e_{0}+\left(a_{1} e_{1}+\cdots+a_{N} e_{N}\right)+\left(b_{1} \varepsilon_{1}+\cdots+b_{N} \varepsilon_{N}\right) \\
& =a_{0} \frac{1}{\sqrt{2 \pi}}+\left(a_{1} \frac{\cos x}{\sqrt{\pi}}+\cdots+a_{N} \frac{\cos N x}{\sqrt{\pi}}\right)+\left(b_{1} \frac{\sin x}{\sqrt{\pi}}+\cdots+b_{N} \frac{\sin N}{\sqrt{\pi}}\right. \\
& =a_{0} \frac{1}{\sqrt{2 \pi}}+\sum_{k=1}^{N}\left[a_{k} \frac{\cos k x}{\sqrt{\pi}}+b_{k} \frac{\sin k x}{\sqrt{\pi}}\right] .
\end{aligned}
$$

$f(x)=P_{V_{N}} f(x)+h_{N}(x)=a_{0} \frac{1}{\sqrt{2 \pi}}+\sum_{k=1}^{N}\left[a_{k} \frac{\cos k x}{\sqrt{\pi}}+b_{k} \frac{\sin k x}{\sqrt{\pi}}\right]+h_{N}(x)$
where $h_{N}:=f-P_{V} f$ is automatically orthogonal to V_{N}.
The Pythagorean formula gives

$$
\begin{equation*}
\|f\|_{L_{2}(-\pi \cdot \pi)}^{2}=\left|a_{0}\right|^{2}+\sum_{k=1}^{N}\left(\left|a_{k}\right|^{2}+\left|b_{k}\right|^{2}\right)+\left\|h_{N}\right\|_{L_{2}(-\pi \cdot \pi)}^{2} . \tag{1}
\end{equation*}
$$

Of course, one hopes that $\lim _{N \rightarrow \infty}\left\|h_{N}\right\|_{L_{2}(-\pi . \pi)}=0$. It is true for essentially all functions - certainly for all piecewise continuous functions f.
[Last revised: February 17, 2011]

