Signature

Printed Name

My signature above certifies that I have complied with the University of Pennsylvania's Code of Academic Integrity in completing this examination.

Math 425	Exam 2	Jerry L. Kazdan
April 26, 2011		12:00 - 1:20

DIRECTIONS This exam has three parts, Part A, short answer, has 1 problem (10 points). Part B has 4 shorter problems (9 points each, so 36 points). Part C has 3 traditional problems (15 points each so 45 points). Total is 91 points.

Closed book, no calculators or computers– but you may use one $3'' \times 5''$ card with notes on both sides.

Part A: Short Answer (1 problem, 10 points).

1. Let S and T be linear spaces and $A: S \to T$ be a linear map. Say **V** and **W** are particular solutions of the equations $A\mathbf{V} = \mathbf{Y}_1$ and $A\mathbf{W} = \mathbf{Y}_2$, respectively, while $\mathbf{Z} \neq 0$ is a solution of the homogeneous equation $A\mathbf{Z} = 0$.

Answer the following in terms of \mathbf{V} , \mathbf{W} , and \mathbf{Z} .

- a) Find some solution of $A\mathbf{X} = 3\mathbf{Y}_1$. Solution: $\mathbf{X} = 3\mathbf{V}$
- b) Find some solution of $A\mathbf{X} = -5\mathbf{Y}_2$. Solution: $\mathbf{X} = -5\mathbf{W}$
- c) Find some solution of $A\mathbf{X} = 3\mathbf{Y}_1 5\mathbf{Y}_2$. Solution: $\mathbf{X} = 3\mathbf{V} 5\mathbf{W}$
- d) Find another solution (other than \mathbf{Z} and 0) of the homogeneous equation $A\mathbf{X} = 0$. SOLUTION: $\mathbf{X} = 2\mathbf{Z}$
- e) Find another solution of $A\mathbf{X} = 3\mathbf{Y}_1 5\mathbf{Y}_2$. SOLUTION: $\mathbf{X} = 3\mathbf{V} 5\mathbf{Y}_2 + \mathbf{Z}$

Part B: Short Problems (4 problems, 9 points each so 36 points)

B-1. Suppose f is a function of one variable that has a continuous second derivative. Show that for any constants a and b, the function

$$u(x,y) = f(ax+by)$$

is a solution of the nonlinear PDE

$$u_{xx}u_{yy} - u_{xy}^2 = 0.$$

SOLUTION: By the chain rule, $u_x = f'(ax + by)a$, so $u_{xx} = f''(ax + by)a^2$. Similarly, $u_{yy} = f''(ax + by)b^2$ and $u_{xy} = f''(ax + by)ab$. Thus,

$$u_{xx}u_{yy} - u_{xy}^2 = f''(ax + by)^2[a^2b^2 - (ab)^2] = 0.$$

B-2. U = (1, 1, 0, 1) and V = (-1, 2, 0, -1) are orthogonal vectors in \mathbb{R}^4 .

Write the vector $\mathbf{X} = (1, 1, 1, 0)$ in the form

$$\mathbf{X} = a\mathbf{U} + b\mathbf{V} + \mathbf{W},\tag{1}$$

where a, b are scalars and **W** is a vector perpendicular to **U** and **V**.

SOLUTION: Take the inner product of (1) with \mathbf{U} and use that we want \mathbf{W} to be orthogonal to \mathbf{U} to find

$$\langle \mathbf{X}, \mathbf{U} \rangle = \mathbf{a} \langle \mathbf{U}, \mathbf{U} \rangle$$
 so $a = \frac{2}{3}$

Similarly,

$$\langle \mathbf{X}, \mathbf{V} \rangle = \mathbf{b} \langle \mathbf{V}, \mathbf{V} \rangle$$
 so $b = \frac{1}{6}$

Thus,

$$X = \frac{2}{3}\mathbf{U} + \frac{1}{6}\mathbf{V} + \mathbf{W}$$

where \mathbf{W} is defined by this equation. It is orthogonal to both \mathbf{U} and \mathbf{V} since that is how we computed a and b.

B–3. If u(x,y) is a solution of the Laplace equation in the unit disk $x^2 + y^2 < 1$ with boundary conditions

$$u(x,y) = \begin{cases} 1 & \text{for } x^2 + y^2 = 1, \quad y > 0\\ 0 & \text{for } x^2 + y^2 = 1, \quad y \le 0. \end{cases}$$

Compute u(0,0).

SOLUTION: By the mean value property, the value of a harmonic function at the center of a disk is the average of its values on the circumference. Thus $u(0,0) = \frac{1}{2}$.

As an alternate, one can use the Poisson formula for the solution of the Dirichlet problem for the disk. The solution at the center (where r = 0) is equally speedy.

B-4. This problem concerns the solution of the initial-value problem for the wave equation $u_{tt} = u_{xx} + u_{yy}$ in two space variables $(x, y) \in \mathbb{R}^2$, together with the initial conditions

$$u(x, y, 0) = f(x, y),$$
 $u_t(x, y, 0) = 0.$

If f(x, y) is a 2π periodic functions of x, so $f(x+2\pi, y) = f(x, y)$ for all x, show that u(x, y, t) is also a 2π periodic function of x.

SOLUTION: Let $v(x, y, t) = u(x + 2\pi, y, t)$. Since the wave equation has constant coefficients, v also satisfies the wave equation for $(x, y) \in \mathbb{R}^2$. Because f is 2π periodic in x, v satisfies the same initial conditions. Since the solution of this initial balue problem for the wave equation is unique, v(x, y, t) = u(x, y, t), which is what we wanted to show.

Part C: Traditional Problems (3 problems, 15 points each so 45 points)

C–1. Let $\Omega \subset \mathbb{R}^2$ be a bounded region in the plane.

a) Let w(x, y, t) be a solution of the modified heat equation

$$w_t = w_{xx} + w_{yy} - 7w_x + w_y - 5w \tag{2}$$

for $(x, y) \in \Omega$ and $0 < t \le T < \infty$. Show that the solution w cannot have a local positive maximum or negative minimum at a point of Ω .

NOTE: There are two cases, one where the maximum point accurs at a point (x, y, t)with 0 < t < T and one at a point (x, y, T)

SOLUTION: If there is a positive maximum at a point (x, y, t) where $(x, y) \in \Omega$ and 0 < t < T, then $w_x = 0$, $w_y = 0$, and $w_t = 0$, and also $w_{xx} \le 0$, $w_{yy} \le 0$ – as well as w > 0, This is incompatible with (2).

At a point (x, y, T), where $(x, y) \in \Omega$ the equality $w_t = 0$ is replaced by the inequality $w_t \ge 0$, but gives the same conclusion.

At at negative minimum the same reasoning applies (just replace u by -u).

b) If $w(x, y, 0) = \sin(x + 2y)$ for $(x, y) \in \Omega$ and $-2 \leq w(x, y, t) \leq 3$ for $(x, y) \in \partial\Omega$, $t \geq 0$, what can you conclude about the size of w(x, y, t) for $(x, y) \in \Omega$, $t \geq 0$?. SOLUTION: By the maximum principle, $-2 \leq w(x, y, t) \leq 3$ for $(x, y) \in \Omega$, $t \geq 0$.

C-2. In a bounded region $\Omega \subset \mathbb{R}^n$, let u(x,t) satisfy the modified heat equation

$$u_t - 2tu = \Delta u,\tag{3}$$

as well as the initial and boundary conditions

$$u(x,0) = f(x)$$
, in Ω with $u(x,t) = 0$ for $x \in \partial \Omega$, $t \ge 0$. (4)

Let $u(x,t) = \varphi(t)v(x,t)$. Show that by picking the function $\varphi(t)$ cleverly, v satisfies the standard heat equation $v_t = \Delta v$ as well as the initial and boundary conditions (4). REMARK: This generalized to $u_t + a(t)u = \Delta u$ where a(t) is any continuous function.

SOLUTION: Since $u_t = \varphi_t v + \varphi v_t$ and $\Delta u = \varphi \Delta u$, Then $u_t - 2tu = \Delta u$ becomes

$$\varphi v_t + (\varphi_t - 2t\varphi)v = \varphi \Delta v.$$

Thus pick $\varphi(t)$ so that $\varphi_t - 2t\varphi = 0$. This is a student ODE. It's solution is $\varphi(t) = Ce^{t^2}$ for some constant C, say C = 1.

It is then obvious that v has the desired properties.

C-3. The motion u(x, y, t) of a special drum $\Omega \in \mathbb{R}^2$ satisfies the modified wave equation

$$u_{tt} + b(x, y, t)u_t = \Delta u \quad \text{for} \quad (x, y) \in \Omega, \quad t > 0.$$
(5)

with boundary condition

$$u(x, y, t) = 0 \quad \text{for} \quad (x, y) \in \partial\Omega, \ t \ge 0.$$
(6)

Define the "energy"

$$E(t) := \frac{1}{2} \iint_{\Omega} \left[u_t^2 + |\nabla u|^2 \right] \, dx \, dy.$$

Assume that $|b(x, y, t)| \le m$ for some constant m and all $(x, y) \in \Omega$, $t \ge 0$.

a) Show that $\frac{dE}{dt} \le 2mE$ for all $t \ge 0$.

SOLUTION: By Green's First,

$$\begin{split} \frac{dE}{dt} &= \iint_{\Omega} \left[u_t u_{tt} + \nabla u \cdot \nabla u_t \right] \, dx \, dy = \iint_{\Omega} \left[u_t u_{tt} - u_t \Delta u \right] \, dx \, dy \\ &= \iint_{\Omega} u_t \left[-b(x, y, t) u_t \right] \, dx \, dy \\ &\leq m \iint_{\Omega} u_t^2 \, dx \, dy \leq 2m E(t). \end{split}$$

b) Deduce that

 $\frac{d}{dt} \left[e^{-2mt} E(t) \right] \le 0 \quad \text{ for all } t \ge 0, \text{ and hence that}$

$$E(t) \le e^{2mt} E(0)$$
 for all $t \ge 0$.

SOLUTION:

$$\frac{d}{dt} \left[e^{-2mt} E(t) \right] = e^{-2mt} [E' - 2mE] \le 0,$$

so $e^{-2mt}E(t)$ is a non-increasing function for $t \ge 0$. Thus $e^{-2mt}E(t) \le E(0)$ for all $t \ge 0$.

c) If u(x, y, 0) = 0 and $u_t(x, y, 0) = 0$ for $(x, y) \in \Omega$, what does this say about E(t) for $t \ge 0$ and hence about u(x, y, t) for $t \ge 0$?

SOLUTION: Under these assumptions E(0) = 0. Thus $0 \le E(t) \le 0$ for all $t \ge 0$, so $E(t) \equiv 0$. Therefore u(x, y, t) = const. But u(x, y, 0) = 0 so $u(x, y, t) \equiv 0$ for all $t \ge 0$.