Signature

Printed Name
My signature above certifies that I have complied with the University of Pennsylvania's Code of Academic Integrity in completing this examination.

Directions This exam has three parts, Part A, short answer, has 1 problem (10 points). Part B has 4 shorter problems (9 points each, so 36 points). Part C has 3 traditional problems (15 points each so 45 points). Total is 91 points.
Closed book, no calculators or computers- but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides.

Part A: Short Answer (1 problem, 10 points).

1. Let S and T be linear spaces and $A: S \rightarrow T$ be a linear map. Say \mathbf{V} and \mathbf{W} are particular solutions of the equations $A \mathbf{V}=\mathbf{Y}_{1}$ and $A \mathbf{W}=\mathbf{Y}_{2}$, respectively, while $\mathbf{Z} \neq 0$ is a solution of the homogeneous equation $A \mathbf{Z}=0$.

Answer the following in terms of \mathbf{V}, \mathbf{W}, and \mathbf{Z}.
a) Find some solution of $A \mathbf{X}=3 \mathbf{Y}_{1} . \quad$ Solution: $\mathbf{X}=3 \mathbf{V}$
b) Find some solution of $A \mathbf{X}=-5 \mathbf{Y}_{2}$. Solution: $\mathbf{X}=-5 \mathbf{W}$
c) Find some solution of $A \mathbf{X}=3 \mathbf{Y}_{1}-5 \mathbf{Y}_{2} . \quad$ Solution: $\mathbf{X}=3 \mathbf{V}-5 \mathbf{W}$
d) Find another solution (other than \mathbf{Z} and 0) of the homogeneous equation $A \mathbf{X}=0$. Solution: $\mathbf{X}=2 \mathbf{Z}$
e) Find another solution of $A \mathbf{X}=3 \mathbf{Y}_{1}-5 \mathbf{Y}_{2} . \quad$ Solution: $\mathbf{X}=3 \mathbf{V}-5 \mathbf{Y}_{2}+\mathbf{Z}$

Part B: Short Problems (4 problems, 9 points each so 36 points)
B-1. Suppose f is a function of one variable that has a continuous second derivative. Show that for any constants a and b, the function

$$
u(x, y)=f(a x+b y)
$$

is a solution of the nonlinear PDE

$$
u_{x x} u_{y y}-u_{x y}^{2}=0 .
$$

SOLUTION: By the chain rule, $u_{x}=f^{\prime}(a x+b y) a$, so $u_{x x}=f^{\prime \prime}(a x+b y) a^{2}$. Similarly, $u_{y y}=$ $f^{\prime \prime}(a x+b y) b^{2}$ and $u_{x y}=f^{\prime \prime}(a x+b y) a b$. Thus,

$$
u_{x x} u_{y y}-u_{x y}^{2}=f^{\prime \prime}(a x+b y)^{2}\left[a^{2} b^{2}-(a b)^{2}\right]=0 .
$$

B-2. $\mathbf{U}=(1,1,0,1)$ and $\mathbf{V}=(-1,2,0,-1)$ are orthogonal vectors in R^{4}.
Write the vector $\mathbf{X}=(1,1,1,0)$ in the form

$$
\begin{equation*}
\mathbf{X}=a \mathbf{U}+b \mathbf{V}+\mathbf{W} \tag{1}
\end{equation*}
$$

where a, b are scalars and \mathbf{W} is a vector perpendicular to \mathbf{U} and \mathbf{V}.
Solution: Take the inner product of (1) with \mathbf{U} and use that we want \mathbf{W} to be orthogonal to \mathbf{U} to find

$$
\langle\mathbf{X}, \mathbf{U}\rangle=\mathbf{a}\langle\mathbf{U}, \mathbf{U}\rangle \quad \text { so } \quad a=\frac{2}{3}
$$

Similarly,

$$
\langle\mathbf{X}, \mathbf{V}\rangle=\mathbf{b}\langle\mathbf{V}, \mathbf{V}\rangle \quad \text { so } \quad b=\frac{1}{6}
$$

Thus,

$$
X=\frac{2}{3} \mathbf{U}+\frac{1}{6} \mathbf{V}+\mathbf{W}
$$

where \mathbf{W} is defined by this equation. It is orthogonal to both \mathbf{U} and \mathbf{V} since that is how we computed a and b.

B-3. If $u(x, y)$ is a solution of the Laplace equation in the unit disk $x^{2}+y^{2}<1$ with boundary conditions

$$
u(x, y)=\left\{\begin{array}{lll}
1 & \text { for } x^{2}+y^{2}=1, & y>0 \\
0 & \text { for } x^{2}+y^{2}=1, & y \leq 0
\end{array}\right.
$$

Compute $u(0,0)$.
Solution: By the mean value property, the value of a harmonic function at the center of a disk is the average of its values on the circumference. Thus $u(0,0)=\frac{1}{2}$.
As an alternate, one can use the Poisson formula for the solution of the Dirichlet problem for the disk. The solution at the center (where $r=0$) is equally speedy.

B-4. This problem concerns the solution of the initial-value problem for the wave equation $u_{t t}=$ $u_{x x}+u_{y y}$ in two space variables $(x, y) \in \mathbb{R}^{2}$, together with the initial conditions

$$
u(x, y, 0)=f(x, y), \quad u_{t}(x, y, 0)=0
$$

If $f(x, y)$ is a 2π periodic functions of x, so $f(x+2 \pi, y)=f(x, y)$ for all x, show that $u(x, y, t)$ is also a 2π periodic function of x.

Solution: Let $v(x, y, t)=u(x+2 \pi, y, t)$. Since the wave equation has constant coefficients, v also satisfies the wave equation for $(x, y) \in \mathbb{R}^{2}$. Because f is 2π periodic in x, v satisfies the same initial conditions. Since the solution of this initial balue problem for the wave equation is unique, $v(x, y, t)=u(x, y, t)$, which is what we wanted to show.

Part C: Traditional Problems (3 problems, 15 points each so 45 points)
$\mathrm{C}-1$. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded region in the plane.
a) Let $w(x, y, t)$ be a solution of the modified heat equation

$$
\begin{equation*}
w_{t}=w_{x x}+w_{y y}-7 w_{x}+w_{y}-5 w \tag{2}
\end{equation*}
$$

for $(x, y) \in \Omega$ and $0<t \leq T<\infty$. Show that the solution w cannot have a local positive maximum or negative minimum at a point of Ω.
Note: There are two cases, one where the maximum point accurs at a point (x, y, t) with $0<t<T$ and one at a point (x, y, T)
Solution: If there is a positive maximum at a point (x, y, t) where $(x, y) \in \Omega$ and $0<t<T$, then $w_{x}=0, w_{y}=0$, and $w_{t}=0$, and also $w_{x x} \leq 0, w_{y y} \leq 0-$ as well as $w>0$, This is incompatible with (2).
At a point (x, y, T), where $(x, y) \in \Omega$ the equality $w_{t}=0$ is replaced by the inequality $w_{t} \geq 0$, but gives the same conclusion.
At at negative minimum the same reasoning applies (just replace u by $-u$).
b) If $w(x, y, 0)=\sin (x+2 y)$ for $(x, y) \in \Omega$ and $-2 \leq w(x, y, t) \leq 3$ for $(x, y) \in \partial \Omega, t \geq 0$, what can you conclude about the size of $w(x, y, t)$ for $(x, y) \in \Omega, t \geq 0$?.
Solution: By the maximum principle, $-2 \leq w(x, y, t) \leq 3$ for $(x, y) \in \Omega, t \geq 0$.

C-2. In a bounded region $\Omega \subset \mathbb{R}^{n}$, let $u(x, t)$ satisfy the modified heat equation

$$
\begin{equation*}
u_{t}-2 t u=\Delta u \tag{3}
\end{equation*}
$$

as well as the initial and boundary conditions

$$
\begin{equation*}
u(x, 0)=f(x), \quad \text { in } \Omega \quad \text { with } u(x, t)=0 \text { for } x \in \partial \Omega, \quad t \geq 0 \tag{4}
\end{equation*}
$$

Let $u(x, t)=\varphi(t) v(x, t)$. Show that by picking the function $\varphi(t)$ cleverly, v satisfies the standard heat equation $v_{t}=\Delta v$ as well as the initial and boundary conditions (4).
REMARK: This generalized to $u_{t}+a(t) u=\Delta u$ where $a(t)$ is any continuous function.
Solution: Since $u_{t}=\varphi_{t} v+\varphi v_{t}$ and $\Delta u=\varphi \Delta u$, Then $u_{t}-2 t u=\Delta u$ becomes

$$
\varphi v_{t}+\left(\varphi_{t}-2 t \varphi\right) v=\varphi \Delta v
$$

Thus pick $\varphi(t)$ so that $\varphi_{t}-2 t \varphi=0$. This is a stndard ODE. It's solution is $\varphi(t)=C e^{t^{2}}$ for some constant C, say $C=1$.
It is then obvious that v has the desired properties.

C-3. The motion $u(x, y, t)$ of a special drum $\Omega \in \mathbb{R}^{2}$ satisfile the modified wave equation

$$
\begin{equation*}
u_{t t}+b(x, y, t) u_{t}=\Delta u \quad \text { for } \quad(x, y) \in \Omega, \quad t>0 \tag{5}
\end{equation*}
$$

with boundary condition

$$
\begin{equation*}
u(x, y, t)=0 \quad \text { for } \quad(x, y) \in \partial \Omega, t \geq 0 \tag{6}
\end{equation*}
$$

Define the "energy"

$$
E(t):=\frac{1}{2} \iint_{\Omega}\left[u_{t}^{2}+|\nabla u|^{2}\right] d x d y .
$$

Assume that $|b(x, y, t)| \leq m$ for some constant m and all $(x, y) \in \Omega, t \geq 0$.
a) Show that $\quad \frac{d E}{d t} \leq 2 m E$ for all $t \geq 0$.

Solution: By Green's First,

$$
\begin{aligned}
\frac{d E}{d t} & =\iint_{\Omega}\left[u_{t} u_{t t}+\nabla u \cdot \nabla u_{t}\right] d x d y=\iint_{\Omega}\left[u_{t} u_{t t}-u_{t} \Delta u\right] d x d y \\
& =\iint_{\Omega} u_{t}\left[-b(x, y, t) u_{t}\right] d x d y \\
& \leq m \iint_{\Omega} u_{t}^{2} d x d y \leq 2 m E(t)
\end{aligned}
$$

b) Deduce that $\quad \frac{d}{d t}\left[e^{-2 m t} E(t)\right] \leq 0 \quad$ for all $t \geq 0$, and hence that

$$
E(t) \leq e^{2 m t} E(0) \quad \text { for all } t \geq 0
$$

Solution:

$$
\frac{d}{d t}\left[e^{-2 m t} E(t)\right]=e^{-2 m t}\left[E^{\prime}-2 m E\right] \leq 0
$$

so $e^{-2 m t} E(t)$ is a non-increasing function fot $t \geq 0$. Thus $e^{-2 m t} E(t) \leq E(0)$ for all $t \geq 0$.
c) If $u(x, y, 0)=0$ and $u_{t}(x, y, 0)=0$ for $(x, y) \in \Omega$, what does this say about $E(t)$ for $t \geq 0$ and hence about $u(x, y, t)$ for $t \geq 0$?
Solution: Under these assumptions $E(0)=0$. Thus $0 \leq E(t) \leq 0$ for all $t \geq 0$, so $E(t) \equiv 0$. Therefore $u(x, y, t)=$ const. But $u(x, y, 0)=0$ so $u(x, y, t) \equiv 0$ for all $t \geq 0$.

