Signature

PRINTED NAME

My signature above certifies that I have complied with the University of Pennsylvania's Code of Academic Integrity in completing this examination.

Math 425 April 26, 2011 Exam 2

Jerry L. Kazdan 12:00 – 1:20

DIRECTIONS This exam has three parts, Part A, short answer, has 1 problem (10 points). Part B has 4 shorter problems (9 points each, so 36 points). Part C has 3 traditional problems (15 points each so 45 points). Total is 91 points.

Closed book, no calculators or computers—but you may use one $3'' \times 5''$ card with notes on both sides.

Part A: Short Answer (1 problem, 10 points).

1. Let S and T be linear spaces and $A: S \to T$ be a linear map. Say **V** and **W** are particular solutions of the equations A**V** = **Y**₁ and A**W** = **Y**₂, respectively, while **Z** \neq 0 is a solution of the homogeneous equation A**Z** = 0.

Answer the following in terms of V, W, and Z.

- a) Find some solution of $AX = 3Y_1$.
- b) Find some solution of $AX = -5Y_2$.
- c) Find some solution of $AX = 3Y_1 5Y_2$.
- d) Find another solution (other than \mathbf{Z} and 0) of the homogeneous equation $A\mathbf{X} = 0$.
- e) Find another solution of $AX = 3Y_1 5Y_2$.

Part B: Short Problems (4 problems, 9 points each so 36 points)

B-1. Suppose f is a function of one variable that has a continuous second derivative. Show that for any constants a and b, the function

$$u(x,y) = f(ax + by)$$

is a solution of the nonlinear PDE

$$u_{xx}u_{yy} - u_{xy}^2 = 0.$$

B-2. U = (1, 1, 0, 1) and V = (-1, 2, 0, -1) are orthogonal vectors in \mathbb{R}^4 .

Write the vector $\mathbf{X} = (1, 1, 1, 0)$ in the form $\mathbf{X} = a\mathbf{U} + b\mathbf{V} + \mathbf{W}$, where a, b are scalars and \mathbf{W} is a vector perpendicular to \mathbf{U} and \mathbf{V} .

B-3. If u(x,y) is a solution of the Laplace equation in the unit disk $x^2 + y^2 < 1$ with boundary conditions

$$u(x,y) = \begin{cases} 1 & \text{for } x^2 + y^2 = 1, & y > 0 \\ 0 & \text{for } x^2 + y^2 = 1, & y \le 0. \end{cases}$$

Compute u(0,0).

B-4. This problem concerns the solution of the initial-value problem for the wave equation $u_{tt} = u_{xx} + u_{yy}$ in two space variables $(x, y) \in \mathbb{R}^2$, together with the initial conditions

$$u(x, y, 0) = f(x, y),$$
 $u_t(x, y, 0) = 0.$

If f(x,y) is a 2π periodic functions of x, so $f(x+2\pi,y)=f(x,y)$ for all x, show that u(x,y,t) is also a 2π periodic function of x.

Part C: Traditional Problems (3 problems, 15 points each so 45 points)

- C-1. Let $\Omega \subset \mathbb{R}^2$ be a bounded region in the plane.
 - a) Let w(x, y, t) be a solution of the modified heat equation

$$w_t = w_{xx} + w_{yy} - 7w_x + w_y - 5w$$

for $(x, y) \in \Omega$ and $0 < t \le T < \infty$. Show that the solution w cannot have a local positive maximum or negative minimum at a point of Ω .

NOTE: There are two cases, one where the maximum point accurs at a point (x, y, t) with 0 < t < T and one at a point (x, y, T)

- b) If $w(x, y, 0) = \sin(x + 2y)$ for $(x, y) \in \Omega$ and $-2 \le w(x, y, t) \le 3$ for $(x, y) \in \partial\Omega$, $t \ge 0$, what can you conclude about the size of w(x, y, t) for $(x, y) \in \Omega$, $t \ge 0$?.
- C-2. In a bounded region $\Omega \subset \mathbb{R}^n$, let u(x,t) satisfy the modified heat equation

$$u_t - 2tu = \Delta u,\tag{1}$$

as well as the initial and boundary conditions

$$u(x,0) = f(x)$$
, in Ω with $u(x,t) = 0$ for $x \in \partial \Omega$, $t \ge 0$.

Let $u(x,t) = \varphi(t)v(x,t)$. Show that by picking the function $\varphi(t)$ cleverly, v satisfies the standard heat equation $v_t = \Delta v$ as well as the initial and boundary conditions (2).

Remark: This generalized to $u_t + a(t)u = \Delta u$ where a(t) is any continuous function.

C-3. The motion u(x,y,t) of a special drum $\Omega \in \mathbb{R}^2$ satisfile the modified wave equation

$$u_{tt} + b(x, y, t)u_t = \Delta u \quad \text{for } (x, y) \in \Omega, \quad t > 0.$$
(3)

with boundary condition

$$u(x, y, t) = 0$$
 for $(x, y) \in \partial \Omega, t > 0.$ (4)

Define the "energy"

$$E(t) := \frac{1}{2} \iint_{\Omega} \left[u_t^2 + |\nabla u|^2 \right] dx dy.$$

Assume that $|b(x,y,t)| \leq m$ for some constant m and all $(x,y) \in \Omega$, $t \geq 0$.

- a) Show that $\frac{dE}{dt} \le 2mE$ for all $t \ge 0$.
- b) Deduce that $\frac{d}{dt} \left[e^{-2mt} E(t) \right] \le 0$ for all $t \ge 0$, and hence that

$$E(t) \le e^{2mt} E(0)$$
 for all $t \ge 0$.

c) If u(x, y, 0) = 0 and $u_t(x, y, 0) = 0$ for $(x, y) \in \Omega$, what does this say about E(t) for $t \ge 0$ and hence about u(x, y, t) for $t \ge 0$?