Math 425 Exam 1 Jerry L. Kazdan
March 3, 2011 12:00 — 1:20

DIRECTIONS This exam has three parts, Part A, short answer, has 1 problem (12 points). Part B
has 5 shorter problems (7 points each, so 35 points). Part C has 3 traditional problems (15 points
each so 45 points). Total is 92 points.

Closed book, no calculators or computers— but you may use one 3" x 5” card with notes on both
sides.

Part A: Short Answer (1 problems, 12 points).

1. Let S and T be linear spaces and A : S — T be a linear map. Say V and W are particular
solutions of the equations AV =Y and AW =Y, respectively, while Z # 0 is a solution of
the homogeneous equation AZ = 0.

Answer the following in terms of V, W, and Z.

a) Find some solution of AX =3Y;. SOLUTION: X = 3V
b) Find some solution of AX = —5Y5. SoLuTION: X = —5W
¢) Find some solution of AX =3Y; —5Y5. SOLUTION: X =3V —5W

d) Find another solution (other than Z and 0) of the homogeneous equation AX = 0.
SOLUTION: X = 27

e) Find two solutions of AX =Y. SorLuTioN: X =V and X =V +7Z

f) Find another solution of AX =3Y; —5Y5. SOLUTION: X =3V —5Yy+ Z

Part B: Short Problems (5 problems, 7 points each so 35 points)

B-1. U= (1,1,0,1) and V = (—1,2,1,—1) are orthogonal vectors in R*.
Write the vector X = (1,1,1,2) in the form X = aU 4 bV + W where a, b are scalars and
W is a vector perpendicular to U and V.

SoLuTioN: Since ||U|| = V3 and |[V] = V7, then U := U/y3 and V := V/y/7T are
orthonormal vectors in the same directions as U and V, respectively. We’ll write X in the
form

X =aU+ fV 4+ W, (1)
where W is a vector perpendicular to both U and V and hence U and V.
Taking the inner product of both sides if (1) with U and V we find that

a=(X,U)= and 3 = (X, V) = 0.

@l =



Thus

4 4
X=—U4+W=-U+W,
/3 3

where W is defined by this equation. It is orthogonal to both U and V since that is how we
computed « and S.

B-2. Find u(x,t) that satisfies wu; —2u; =1 with wu(z,0) =0.

SOLUTION: By naively guessing, a particular solution of the infomogeneous equation is upart :=
x. The general solution of the homogeneous equation is w(z,t)pom = f(2z + t) for any
(differentiable) function f. Thus the general solution of uy, — 2u; = 1 is

u(z,t) = fRx +t) + x.

Now match the initial conditions: 0 = u(z,0) = f(2z) + x so f(x) = —z/2. Thus the desired
solution is
w(x,t) = -2z +1t)/2+x = —t/2.

To guard against errors, it is important to verify that this works (it does).

B-3. Let u(x,t) be a solution of the wave equation
Uy = Uy, for —oco<z<o0,t>0,
with the (continuous) initial conditions

u(a:,()) = f(aj)a ut($50) = g(.%)

Find the largest interval J = {a < z < b} where changing f(z) or g(z) at any point of J can
change (“influence”) the value of u(0,3). In other words, in the (x,t) plane, find all the points
on the z-axis that are in the domain of dependence of (0, 3).

SoLuTION: For the general equation us = ¢ty , to find the domain of dependence of a point
P := (xg,tp), draw the lines x — ¢t = const; and x + ¢t = conste that go through P. The
domain of dependence are the points (z,t) the region (“backward cone”) between these lines
with t <.

In this particular problem, these lines are x — 2t = x¢y — 2tg = —6 and x + 2t = x¢ + 2tg = 6.
The initial conditions are placed on the line where ¢t = 0. Thus the points in the domain of
dependence at t = 0 is the interval —6 < z < 6.

B—-4. Find the general solution u(xz,y) of ug, = 4y.

SOLUTION: By integrating twice, it is obvious that a particular solution of the inhomogeneous
equation is Upart = 22y%. The general solution, v(z,y), of the homogeneous equation is

v(z,y) = () +¥(y)



for any (differentiable) functions ¢(x) and ¥ (y). Thus the general solution of the inhomoge-
neous equation is

u(z,y) = o(x) + P(y) + 2ay°.

B-5. Let u(z,y) and v(z,y) be a solutions of the Laplace equation Au =0, Av =0 in a bounded
region €2 in the plane. If © > v on the boundary of 2, what, if anything, can you conclude
about the relationship between u and v inside Q7 Justify your assertion.

SOLUTION: Let w:=u—v. Then Aw =0 in 2 and w > 0 on the boundary of 2. Thus, by
the maximum principle w > 0 throughout €2, that is, u > v throughout 2.

Part C: Traditional Problems (3 problems, 15 points each so 45 points)
C-1. Find the motion wu(z,t) of a clamped string {0 <z < 7}
Ugt = Uz,
with initial and boundary conditions:
u(z,0) =0, w(x,0)=15sinbz, and u(0,t)=u(m,t)=0.

SOLUTION: As usual, use separation of variables and seek special solutions of the form u(x,t) =
X (x)T(t). Substituting in the wave equation this gives

= ——~ = const = q,
SO )
X"—aX=0 and7T —aoT =0.
To match the boundary conditions u(0,t) = u(m,t) =0 weneed a = —k?, k=1, 2,... and
find the special solutions

ug(z,t) = [Ag coskt + By sinkt|sinkz, k=1,2,...,

SO
00

u(x,t) = Z[Ak cos kt + By sin kt] sin kx,
k=1
where the coefficients Ay and Bj are found by matching the initial conditions:

u(x,0) = Z Ay sinkz, ug(x,0) = Z kDB, sin kzx.
k=1 k=1

For this problem the initial data is so simple that by inspection Ay = 0 for all £k and B, =0
for all k except 5B5 = 15, so Bs = 3. Thus

u(z,t) = 3sin 5t sin 5x.

As a guard against errors, it is easy to verify that this satisfies all the required conditions.



C-2. Let u(x,y) satisfy Au —wu = 0 in a bounded region Q C R? with wu(z,y) = 0 on the
boundary of Q. Use Green’s identity to show that w(z,y) =0 throughout €.

SOLUTION: Green’s First identity states:

//QﬂﬂAwdxdy_Agw(gjtds—/évﬁp.vwdgcdy

for all twice continuously differentiable functions ¥ (z,v), ¢(x,y). Applying this with ¢ = ¢ =

u yields
// u?dr dy = —//|Vu2dxdy <0,
Q Q

so u(x,y) =0 throughout Q.

This same reasoning applies to solutions of Au — ¢(z,y)u = 0, if we assume that c(x,y) > 0.

C-3. Let u(x,t) be the temperature of a rod of length L that satisfies
Up = Ugg — TU for O<xz <L, t>0,

where r > 0 is a constant [this is related to the heat equation but assumes that heat radiates
out into the air along the rod]. Assume u satisfies the initial condition wu(z,0) = f(z).

L
Define the total heat energy by E(t) = %/ u?(z,t) de.
0

a) If u also satisfies the Dirichlet boundary conditions
u(0,t) =0, u(L,t) =0

(the ends of the rod are held at temperature 0), show that E(t) is a decreasing function
of ¢.
SoLUTION: Use the PDE and integrate by parts:

dE L L
— = / wu dor = / U[tyy — Tul dr = uuy

L

L
0—/ 24+ ra?]dz <0 (2)
= 0

b) Show that even if u satisfies Neumann boundary conditions
uz(0,t) =0, ug(L,t) =0

(the ends of the rod are insulated), E(t) is still a decreasing function of .

SOLUTION: The previous computation (2) still works.

c) [Extra credit!] Show that in either of the above cases tlim E(t)=0.



SOLUTION: Notice that (2) has the stronger consequence

dE

L L
— = / [u? + ru®] de < r/ w?dr = —2rE,

that is, E' + 2rE < 0, so [e?"E(t)]’ < 0. In words, e**E(t) is a decreasing (really, only
“non-increasing”) function. Consequently,

e E(t) < BE(0) forall t>0.

Thus
E(t)<e®E(0) -0 as t— oo,



