
Math 425 Exam 1 Jerry L. Kazdan
March 3, 2011 12:00 – 1:20

Directions This exam has three parts, Part A, short answer, has 1 problem (12 points). Part B
has 5 shorter problems (7 points each, so 35 points). Part C has 3 traditional problems (15 points
each so 45 points). Total is 92 points.
Closed book, no calculators or computers– but you may use one 3′′ × 5′′ card with notes on both
sides.

Part A: Short Answer (1 problems, 12 points).

1. Let S and T be linear spaces and A : S → T be a linear map. Say V and W are particular
solutions of the equations AV = Y1 and AW = Y2 , respectively, while Z 6= 0 is a solution of
the homogeneous equation AZ = 0.

Answer the following in terms of V , W , and Z.

a) Find some solution of AX = 3Y1 . Solution: X = 3V

b) Find some solution of AX = −5Y2 . Solution: X = −5W

c) Find some solution of AX = 3Y1 − 5Y2 . Solution: X = 3V − 5W

d) Find another solution (other than Z and 0) of the homogeneous equation AX = 0.
Solution: X = 2Z

e) Find two solutions of AX = Y1 . Solution: X = V and X = V + Z

f) Find another solution of AX = 3Y1 − 5Y2 . Solution: X = 3V − 5Y2 + Z

Part B: Short Problems (5 problems, 7 points each so 35 points)

B–1. U = (1, 1, 0, 1) and V = (−1, 2, 1,−1) are orthogonal vectors in R4 .

Write the vector X = (1, 1, 1, 2) in the form X = aU + bV + W , where a, b are scalars and
W is a vector perpendicular to U and V .

Solution: Since ‖U‖ =
√

3 and ‖V‖ =
√

7 , then Û := U/
√

3 and V̂ := V/
√

7 are
orthonormal vectors in the same directions as U and V , respectively. We’ll write X in the
form

X = αÛ + βV̂ + W, (1)

where W is a vector perpendicular to both Û and V̂ and hence U and V .

Taking the inner product of both sides if (1) with Û and V̂ we find that

α = 〈X, Û〉 =
4√
3

and β = 〈X, V̂〉 = 0.
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Thus
X =

4√
3
Û + W =

4
3
U + W,

where W is defined by this equation. It is orthogonal to both U and V since that is how we
computed α and β .

B–2. Find u(x, t) that satisfies ux − 2ut = 1 with u(x, 0) = 0.

Solution: By naively guessing, a particular solution of the infomogeneous equation is upart :=
x . The general solution of the homogeneous equation is u(x, t)hom := f(2x + t) for any
(differentiable) function f . Thus the general solution of ux − 2ut = 1 is

u(x, t) = f(2x+ t) + x.

Now match the initial conditions: 0 = u(x, 0) = f(2x) + x so f(x) = −x/2. Thus the desired
solution is

u(x, t) = −(2x+ t)/2 + x = −t/2.

To guard against errors, it is important to verify that this works (it does).

B–3. Let u(x, t) be a solution of the wave equation

utt = 4uxx, for −∞ < x <∞, t ≥ 0,

with the (continuous) initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x).

Find the largest interval J = {a ≤ x ≤ b} where changing f(x) or g(x) at any point of J can
change (“influence”) the value of u(0, 3). In other words, in the (x, t) plane, find all the points
on the x-axis that are in the domain of dependence of (0, 3).

Solution: For the general equation utt = c2uxx , to find the domain of dependence of a point
P := (x0, t0), draw the lines x − ct = const1 and x + ct = const2 that go through P . The
domain of dependence are the points (x, t) the region (“backward cone”) between these lines
with t ≤ t0 .

In this particular problem, these lines are x− 2t = x0 − 2t0 = −6 and x+ 2t = x0 + 2t0 = 6.
The initial conditions are placed on the line where t = 0. Thus the points in the domain of
dependence at t = 0 is the interval −6 ≤ x ≤ 6.

B–4. Find the general solution u(x, y) of uxy = 4y .

Solution: By integrating twice, it is obvious that a particular solution of the inhomogeneous
equation is upart = 2xy2 . The general solution, v(x, y), of the homogeneous equation is

v(x, y) = ϕ(x) + ψ(y)
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for any (differentiable) functions ϕ(x) and ψ(y). Thus the general solution of the inhomoge-
neous equation is

u(x, y) = ϕ(x) + ψ(y) + 2xy2.

B–5. Let u(x, y) and v(x, y) be a solutions of the Laplace equation ∆u = 0, ∆v = 0 in a bounded
region Ω in the plane. If u > v on the boundary of Ω, what, if anything, can you conclude
about the relationship between u and v inside Ω? Justify your assertion.

Solution: Let w := u− v . Then ∆w = 0 in Ω and w > 0 on the boundary of Ω. Thus, by
the maximum principle w > 0 throughout Ω, that is, u > v throughout Ω.

Part C: Traditional Problems (3 problems, 15 points each so 45 points)

C–1. Find the motion u(x, t) of a clamped string {0 ≤ x ≤ π}

utt = uxx,

with initial and boundary conditions:

u(x, 0) = 0, ut(x, 0) = 15 sin 5x, and u(0, t) = u(π, t) = 0.

Solution: As usual, use separation of variables and seek special solutions of the form u(x, t) =
X(x)T (t). Substituting in the wave equation this gives

X ′′(x)
X(x)

=
T̈ (t)
T (t)

= const = α,

so
X ′′ − αX = 0 and T̈ − αT = 0.

To match the boundary conditions u(0, t) = u(π, t) = 0 we need α = −k2 , k = 1, 2, . . . and
find the special solutions

uk(x, t) = [Ak cos kt+Bk sin kt] sin kx, k = 1, 2, . . . ,

so

u(x, t) =
∞∑

k=1

[Ak cos kt+Bk sin kt] sin kx,

where the coefficients Ak and Bk are found by matching the initial conditions:

u(x, 0) =
∞∑

k=1

Ak sin kx, ut(x, 0) =
∞∑

k=1

kBk sin kx.

For this problem the initial data is so simple that by inspection Ak = 0 for all k and Bk = 0
for all k except 5B5 = 15, so B5 = 3. Thus

u(x, t) = 3 sin 5t sin 5x.

As a guard against errors, it is easy to verify that this satisfies all the required conditions.
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C–2. Let u(x, y) satisfy ∆u − u = 0 in a bounded region Ω ⊂ R2 with u(x, y) = 0 on the
boundary of Ω. Use Green’s identity to show that u(x, y) = 0 throughout Ω.

Solution: Green’s First identity states:∫∫
Ω
ϕ∆ψ dx dy =

∫
∂Ω
ϕ
∂ψ

∂N
ds−

∫∫
Ω
∇ϕ · ∇ψ dx dy

for all twice continuously differentiable functions ψ(x, y), ϕ(x, y). Applying this with ϕ = ψ =
u yields ∫∫

Ω
u2 dx dy = −

∫∫
Ω
|∇u|2 dx dy ≤ 0,

so u(x, y) ≡ 0 throughout Ω.

This same reasoning applies to solutions of ∆u− c(x, y)u = 0, if we assume that c(x, y) ≥ 0.

C–3. Let u(x, t) be the temperature of a rod of length L that satisfies

ut = uxx − ru for 0 < x < L, t > 0,

where r > 0 is a constant [this is related to the heat equation but assumes that heat radiates
out into the air along the rod]. Assume u satisfies the initial condition u(x, 0) = f(x).

Define the total heat energy by E(t) = 1
2

∫ L

0
u2(x, t) dx .

a) If u also satisfies the Dirichlet boundary conditions

u(0, t) = 0, u(L, t) = 0

(the ends of the rod are held at temperature 0), show that E(t) is a decreasing function
of t .

Solution: Use the PDE and integrate by parts:

dE

dt
=

∫ L

0
uut dx =

∫ L

0
u[uxx − ru] dx = uux

L

x=0
−

∫ L

0
[u2

x + ru2] dx ≤ 0 (2)

b) Show that even if u satisfies Neumann boundary conditions

ux(0, t) = 0, ux(L, t) = 0

(the ends of the rod are insulated), E(t) is still a decreasing function of t .

Solution: The previous computation (2) still works.

c) [Extra credit!] Show that in either of the above cases lim
t→∞

E(t) = 0.
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Solution: Notice that (2) has the stronger consequence

dE

dt
= −

∫ L

0
[u2

x + ru2] dx ≤ −r
∫ L

0
u2 dx = −2rE,

that is, E′ + 2rE ≤ 0, so [e2rtE(t)]′ ≤ 0. In words, e2rtE(t) is a decreasing (really, only
“non-increasing”) function. Consequently,

e2rtE(t) ≤ E(0) for all t ≥ 0.

Thus
E(t) ≤ e−2rtE(0) → 0 as t→∞.
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