Directions This exam has three parts, Part A, short answer, has 1 problem (12 points). Part B has 5 shorter problems (7 points each, so 35 points). Part C has 3 traditional problems (15 points each so 45 points). Total is 92 points.
Closed book, no calculators or computers- but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides.

Part A: Short Answer (1 problems, 12 points).

1. Let S and T be linear spaces and $A: S \rightarrow T$ be a linear map. Say \mathbf{V} and \mathbf{W} are particular solutions of the equations $A \mathbf{V}=\mathbf{Y}_{1}$ and $A \mathbf{W}=\mathbf{Y}_{2}$, respectively, while $\mathbf{Z} \neq 0$ is a solution of the homogeneous equation $A \mathbf{Z}=0$.

Answer the following in terms of \mathbf{V}, \mathbf{W}, and \mathbf{Z}.
a) Find some solution of $A \mathbf{X}=3 \mathbf{Y}_{1} . \quad$ Solution: $\mathbf{X}=3 \mathbf{V}$
b) Find some solution of $A \mathbf{X}=-5 \mathbf{Y}_{2} . \quad$ Solution: $\mathbf{X}=-5 \mathbf{W}$
c) Find some solution of $A \mathbf{X}=3 \mathbf{Y}_{1}-5 \mathbf{Y}_{2} . \quad$ Solution: $\mathbf{X}=3 \mathbf{V}-5 \mathbf{W}$
d) Find another solution (other than \mathbf{Z} and 0) of the homogeneous equation $A \mathbf{X}=0$. Solution: $\mathbf{X}=2 \mathbf{Z}$
e) Find two solutions of $A \mathbf{X}=\mathbf{Y}_{1} . \quad$ Solution: $\mathbf{X}=\mathbf{V}$ and $\mathbf{X}=\mathbf{V}+\mathbf{Z}$
f) Find another solution of $A \mathbf{X}=3 \mathbf{Y}_{1}-5 \mathbf{Y}_{2} . \quad$ Solution: $\mathbf{X}=3 \mathbf{V}-5 \mathbf{Y}_{2}+\mathbf{Z}$

Part B: Short Problems (5 problems, 7 points each so 35 points)
$\mathrm{B}-1 . \mathbf{U}=(1,1,0,1)$ and $\mathbf{V}=(-1,2,1,-1)$ are orthogonal vectors in R^{4}.
Write the vector $\mathbf{X}=(1,1,1,2)$ in the form $\mathbf{X}=a \mathbf{U}+b \mathbf{V}+\mathbf{W}$, where a, b are scalars and \mathbf{W} is a vector perpendicular to \mathbf{U} and \mathbf{V}.
Solution: Since $\|\mathbf{U}\|=\sqrt{\mathbf{3}}$ and $\|\mathbf{V}\|=\sqrt{\mathbf{7}}$, then $\hat{\mathbf{U}}:=\mathbf{U} / \sqrt{3}$ and $\hat{\mathbf{V}}:=\mathbf{V} / \sqrt{7}$ are orthonormal vectors in the same directions as \mathbf{U} and \mathbf{V}, respectively. We'll write \mathbf{X} in the form

$$
\begin{equation*}
\mathbf{X}=\alpha \hat{\mathbf{U}}+\beta \hat{\mathbf{V}}+\mathbf{W} \tag{1}
\end{equation*}
$$

where \mathbf{W} is a vector perpendicular to both $\hat{\mathbf{U}}$ and $\hat{\mathbf{V}}$ and hence \mathbf{U} and \mathbf{V}.
Taking the inner product of both sides if (1) with $\hat{\mathbf{U}}$ and $\hat{\mathbf{V}}$ we find that

$$
\alpha=\langle\mathbf{X}, \hat{\mathbf{U}}\rangle=\frac{\mathbf{4}}{\sqrt{\mathbf{3}}} \quad \text { and } \beta=\langle\mathbf{X}, \hat{\mathbf{V}}\rangle=\mathbf{0}
$$

Thus

$$
\mathbf{X}=\frac{4}{\sqrt{3}} \hat{\mathbf{U}}+\mathbf{W}=\frac{4}{3} \mathbf{U}+\mathbf{W}
$$

where \mathbf{W} is defined by this equation. It is orthogonal to both \mathbf{U} and \mathbf{V} since that is how we computed α and β.

B-2. Find $u(x, t)$ that satisfies $u_{x}-2 u_{t}=1$ with $u(x, 0)=0$.
Solution: By naively guessing, a particular solution of the infomogeneous equation is $u_{\text {part }}$:= x. The general solution of the homogeneous equation is $u(x, t)_{\text {hom }}:=f(2 x+t)$ for any (differentiable) function f. Thus the general solution of $u_{x}-2 u_{t}=1$ is

$$
u(x, t)=f(2 x+t)+x .
$$

Now match the initial conditions: $0=u(x, 0)=f(2 x)+x$ so $f(x)=-x / 2$. Thus the desired solution is

$$
u(x, t)=-(2 x+t) / 2+x=-t / 2 .
$$

To guard against errors, it is important to verify that this works (it does).

B-3. Let $u(x, t)$ be a solution of the wave equation

$$
u_{t t}=4 u_{x x}, \quad \text { for } \quad-\infty<x<\infty, t \geq 0,
$$

with the (continuous) initial conditions

$$
u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x)
$$

Find the largest interval $J=\{a \leq x \leq b\}$ where changing $f(x)$ or $g(x)$ at any point of J can change ("influence") the value of $u(0,3)$. In other words, in the (x, t) plane, find all the points on the x-axis that are in the domain of dependence of $(0,3)$.
Solution: For the general equation $u_{t t}=c^{2} u_{x x}$, to find the domain of dependence of a point $P:=\left(x_{0}, t_{0}\right)$, draw the lines $x-c t=$ const $_{1}$ and $x+c t=$ const $_{2}$ that go through P. The domain of dependence are the points (x, t) the region ("backward cone") between these lines with $t \leq t_{0}$.
In this particular problem, these lines are $x-2 t=x_{0}-2 t_{0}=-6$ and $x+2 t=x_{0}+2 t_{0}=6$. The initial conditions are placed on the line where $t=0$. Thus the points in the domain of dependence at $t=0$ is the interval $-6 \leq x \leq 6$.

B-4. Find the general solution $u(x, y)$ of $u_{x y}=4 y$.
Solution: By integrating twice, it is obvious that a particular solution of the inhomogeneous equation is $u_{\text {part }}=2 x y^{2}$. The general solution, $v(x, y)$, of the homogeneous equation is

$$
v(x, y)=\varphi(x)+\psi(y)
$$

for any (differentiable) functions $\varphi(x)$ and $\psi(y)$. Thus the general solution of the inhomogeneous equation is

$$
u(x, y)=\varphi(x)+\psi(y)+2 x y^{2} .
$$

B-5. Let $u(x, y)$ and $v(x, y)$ be a solutions of the Laplace equation $\Delta u=0, \Delta v=0$ in a bounded region Ω in the plane. If $u>v$ on the boundary of Ω, what, if anything, can you conclude about the relationship between u and v inside Ω ? Justify your assertion.
Solution: Let $w:=u-v$. Then $\Delta w=0$ in Ω and $w>0$ on the boundary of Ω. Thus, by the maximum principle $w>0$ throughout Ω, that is, $u>v$ throughout Ω.

Part C: Traditional Problems (3 problems, 15 points each so 45 points)
$\mathrm{C}-1$. Find the motion $u(x, t)$ of a clamped string $\{0 \leq x \leq \pi\}$

$$
u_{t t}=u_{x x},
$$

with initial and boundary conditions:

$$
u(x, 0)=0, \quad u_{t}(x, 0)=15 \sin 5 x, \quad \text { and } \quad u(0, t)=u(\pi, t)=0
$$

Solution: As usual, use separation of variables and seek special solutions of the form $u(x, t)=$ $X(x) T(t)$. Substituting in the wave equation this gives

$$
\frac{X^{\prime \prime}(x)}{X(x)}=\frac{\ddot{T}(t)}{T(t)}=\text { const }=\alpha
$$

so

$$
X^{\prime \prime}-\alpha X=0 \quad \text { and } \ddot{T}-\alpha T=0 .
$$

To match the boundary conditions $u(0, t)=u(\pi, t)=0$ we need $\alpha=-k^{2}, k=1,2, \ldots$ and find the special solutions

$$
u_{k}(x, t)=\left[A_{k} \cos k t+B_{k} \sin k t\right] \sin k x, \quad k=1,2, \ldots,
$$

so

$$
u(x, t)=\sum_{k=1}^{\infty}\left[A_{k} \cos k t+B_{k} \sin k t\right] \sin k x,
$$

where the coefficients A_{k} and B_{k} are found by matching the initial conditions:

$$
u(x, 0)=\sum_{k=1}^{\infty} A_{k} \sin k x, \quad u_{t}(x, 0)=\sum_{k=1}^{\infty} k B_{k} \sin k x .
$$

For this problem the initial data is so simple that by inspection $A_{k}=0$ for all k and $B_{k}=0$ for all k except $5 B_{5}=15$, so $B_{5}=3$. Thus

$$
u(x, t)=3 \sin 5 t \sin 5 x
$$

As a guard against errors, it is easy to verify that this satisfies all the required conditions.

C-2. Let $u(x, y)$ satisfy $\Delta u-u=0$ in a bounded region $\Omega \subset \mathbb{R}^{2}$ with $u(x, y)=0$ on the boundary of Ω. Use Green's identity to show that $u(x, y)=0$ throughout Ω.

Solution: Green's First identity states:

$$
\iint_{\Omega} \varphi \Delta \psi d x d y=\int_{\partial \Omega} \varphi \frac{\partial \psi}{\partial N} d s-\iint_{\Omega} \nabla \varphi \cdot \nabla \psi d x d y
$$

for all twice continuously differentiable functions $\psi(x, y), \varphi(x, y)$. Applying this with $\varphi=\psi=$ u yields

$$
\iint_{\Omega} u^{2} d x d y=-\iint_{\Omega}|\nabla u|^{2} d x d y \leq 0
$$

so $u(x, y) \equiv 0$ throughout Ω.
This same reasoning applies to solutions of $\Delta u-c(x, y) u=0$, if we assume that $c(x, y) \geq 0$.
$\mathrm{C}-3$. Let $u(x, t)$ be the temperature of a rod of length L that satisfies

$$
u_{t}=u_{x x}-r u \quad \text { for } \quad 0<x<L, \quad t>0
$$

where $r>0$ is a constant [this is related to the heat equation but assumes that heat radiates out into the air along the rod]. Assume u satisfies the initial condition $u(x, 0)=f(x)$.
Define the total heat energy by $E(t)=\frac{1}{2} \int_{0}^{L} u^{2}(x, t) d x$.
a) If u also satisfies the Dirichlet boundary conditions

$$
u(0, t)=0, \quad u(L, t)=0
$$

(the ends of the rod are held at temperature 0), show that $E(t)$ is a decreasing function of t.

Solution: Use the PDE and integrate by parts:

$$
\begin{equation*}
\frac{d E}{d t}=\int_{0}^{L} u u_{t} d x=\int_{0}^{L} u\left[u_{x x}-r u\right] d x=\left.u u_{x}\right|_{x=0} ^{L}-\int_{0}^{L}\left[u_{x}^{2}+r u^{2}\right] d x \leq 0 \tag{2}
\end{equation*}
$$

b) Show that even if u satisfies Neumann boundary conditions

$$
u_{x}(0, t)=0, \quad u_{x}(L, t)=0
$$

(the ends of the rod are insulated), $E(t)$ is still a decreasing function of t.
Solution: The previous computation (2) still works.
c) [Extra credit!] Show that in either of the above cases $\lim _{t \rightarrow \infty} E(t)=0$.

Solution: Notice that (2) has the stronger consequence

$$
\frac{d E}{d t}=-\int_{0}^{L}\left[u_{x}^{2}+r u^{2}\right] d x \leq-r \int_{0}^{L} u^{2} d x=-2 r E,
$$

that is, $E^{\prime}+2 r E \leq 0$, so $\left[e^{2 r t} E(t)\right]^{\prime} \leq 0$. In words, $e^{2 r t} E(t)$ is a decreasing (really, only "non-increasing") function. Consequently,

$$
e^{2 r t} E(t) \leq E(0) \quad \text { for all } \quad t \geq 0
$$

Thus

$$
E(t) \leq e^{-2 r t} E(0) \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty .
$$

