Math 425 March 3, 2011

DIRECTIONS This exam has three parts, Part A, short answer, has 1 problem (12 points). Part B has 5 shorter problems (7 points each, so 35 points). Part C has 3 traditional problems (15 points each so 45 points). Total is 92 points.

Closed book, no calculators or computers– but you may use one $3'' \times 5''$ card with notes on both sides.

Part A: Short Answer (1 problems, 12 points).

1. Let S and T be linear spaces and $A: S \to T$ be a linear map. Say **V** and **W** are particular solutions of the equations $A\mathbf{V} = \mathbf{Y}_1$ and $A\mathbf{W} = \mathbf{Y}_2$, respectively, while $\mathbf{Z} \neq 0$ is a solution of the homogeneous equation $A\mathbf{Z} = 0$.

Answer the following in terms of \mathbf{V} , \mathbf{W} , and \mathbf{Z} .

- a) Find some solution of $A\mathbf{X} = 3\mathbf{Y}_1$.
- b) Find some solution of $A\mathbf{X} = -5\mathbf{Y}_2$.
- c) Find some solution of $A\mathbf{X} = 3\mathbf{Y}_1 5\mathbf{Y}_2$.
- d) Find another solution (other than \mathbf{Z} and 0) of the homogeneous equation $A\mathbf{X} = 0$.
- e) Find *two* solutions of $A\mathbf{X} = \mathbf{Y}_1$.
- f) Find another solution of $A\mathbf{X} = 3\mathbf{Y}_1 5\mathbf{Y}_2$.

Part B: Short Problems (5 problems, 7 points each so 35 points)

B-1. U = (1, 1, 0, 1) and V = (-1, 2, 1, -1) are orthogonal vectors in \mathbb{R}^4 .

Write the vector $\mathbf{X} = (1, 1, 1, 2)$ in the form $\mathbf{X} = a\mathbf{U} + b\mathbf{V} + \mathbf{W}$, where a, b are scalars and \mathbf{W} is a vector perpendicular to \mathbf{U} and \mathbf{V} .

B-2. Find u(x,t) that satisfies $u_x - 2u_t = 1$ with u(x,0) = 0.

B-3. Let u(x,t) be a solution of the wave equation

 $u_{tt} = 4u_{xx}, \quad \text{for} \quad -\infty < x < \infty, \ t \ge 0,$

with the (continuous) initial conditions

$$u(x,0) = f(x), \qquad u_t(x,0) = g(x).$$

Find the largest interval $J = \{a \le x \le b\}$ where changing f(x) or g(x) at any point of J can change ("influence") the value of u(0,3). In other words, in the (x,t) plane, find all the points on the x-axis that are in the domain of dependence of (0, 3).

- B-4. Find the general solution u(x, y) of $u_{xy} = 4y$.
- B-5. Let u(x, y) and v(x, y) be a solutions of the Laplace equation $\Delta u = 0$, $\Delta v = 0$ in a bounded region Ω in the plane. If u > v on the boundary of Ω , what, if anything, can you conclude about the relationship between u and v inside Ω ? Justify your assertion.

Part C: Traditional Problems (3 problems, 15 points each so 45 points)

C-1. Find the motion u(x,t) of a clamped string $\{0 \le x \le \pi\}$

$$u_{tt} = u_{xx},$$

with initial and boundary conditions:

$$u(x,0) = 0$$
, $u_t(x,0) = 15\sin 5x$, and $u(0,t) = u(\pi,t) = 0$.

- C-2. Let u(x, y) satisfy $\Delta u u = 0$ in a bounded region $\Omega \subset \mathbb{R}^2$ with u(x, y) = 0 on the boundary of Ω . Use Green's identity to show that u(x, y) = 0 throughout Ω .
- C-3. Let u(x,t) be the temperature of a rod of length L that satisfies

$$u_t = u_{xx} - ru$$
 for $0 < x < L$, $t > 0$

where r > 0 is a constant [this is related to the heat equation but assumes that heat radiates out into the air along the rod]. Assume u satisfies the initial condition u(x,0) = f(x).

Define the total heat energy by $E(t) = \frac{1}{2} \int_0^L u^2(x,t) dx$.

a) If u also satisfies the Dirichlet boundary conditions

$$u(0,t) = 0, \qquad u(L,t) = 0$$

(the ends of the rod are held at temperature 0), show that E(t) is a decreasing function of t.

b) Show that even if u satisfies Neumann boundary conditions

$$u_x(0,t) = 0, \qquad u_x(L,t) = 0$$

(the ends of the rod are insulated), E(t) is still a decreasing function of t.

c) [Extra credit!] Show that in either of the above cases $\lim_{t\to\infty} E(t) = 0$.