Directions This exam has three parts, Part A, short answer, has 1 problem (12 points). Part B has 5 shorter problems (7 points each, so 35 points). Part C has 3 traditional problems (15 points each so 45 points). Total is 92 points.
Closed book, no calculators or computers- but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides.

Part A: Short Answer (1 problems, 12 points).

1. Let S and T be linear spaces and $A: S \rightarrow T$ be a linear map. Say \mathbf{V} and \mathbf{W} are particular solutions of the equations $A \mathbf{V}=\mathbf{Y}_{1}$ and $A \mathbf{W}=\mathbf{Y}_{2}$, respectively, while $\mathbf{Z} \neq 0$ is a solution of the homogeneous equation $A \mathbf{Z}=0$.

Answer the following in terms of \mathbf{V}, \mathbf{W}, and \mathbf{Z}.
a) Find some solution of $A \mathbf{X}=3 \mathbf{Y}_{1}$.
b) Find some solution of $A \mathbf{X}=-5 \mathbf{Y}_{2}$.
c) Find some solution of $A \mathbf{X}=3 \mathbf{Y}_{1}-5 \mathbf{Y}_{2}$.
d) Find another solution (other than \mathbf{Z} and 0) of the homogeneous equation $A \mathbf{X}=0$.
e) Find two solutions of $A \mathbf{X}=\mathbf{Y}_{1}$.
f) Find another solution of $A \mathbf{X}=3 \mathbf{Y}_{1}-5 \mathbf{Y}_{2}$.

Part B: Short Problems (5 problems, 7 points each so 35 points)
$\mathrm{B}-1 . \mathbf{U}=(1,1,0,1)$ and $\mathbf{V}=(-1,2,1,-1)$ are orthogonal vectors in R^{4}.
Write the vector $\mathbf{X}=(1,1,1,2)$ in the form $\mathbf{X}=a \mathbf{U}+b \mathbf{V}+\mathbf{W}$, where a, b are scalars and \mathbf{W} is a vector perpendicular to \mathbf{U} and \mathbf{V}.

B-2. Find $u(x, t)$ that satisfies $u_{x}-2 u_{t}=1$ with $u(x, 0)=0$.
$\mathrm{B}-3$. Let $u(x, t)$ be a solution of the wave equation

$$
u_{t t}=4 u_{x x}, \quad \text { for } \quad-\infty<x<\infty, t \geq 0
$$

with the (continuous) initial conditions

$$
u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x)
$$

Find the largest interval $J=\{a \leq x \leq b\}$ where changing $f(x)$ or $g(x)$ at any point of J can change ("influence") the value of $u(0,3)$. In other words, in the (x, t) plane, find all the points on the x-axis that are in the domain of dependence of $(0,3)$.

B-4. Find the general solution $u(x, y)$ of $u_{x y}=4 y$.

B-5. Let $u(x, y)$ and $v(x, y)$ be a solutions of the Laplace equation $\Delta u=0, \Delta v=0$ in a bounded region Ω in the plane. If $u>v$ on the boundary of Ω, what, if anything, can you conclude about the relationship between u and v inside Ω ? Justify your assertion.

Part C: Traditional Problems (3 problems, 15 points each so 45 points)
$\mathrm{C}-1$. Find the motion $u(x, t)$ of a clamped string $\{0 \leq x \leq \pi\}$

$$
u_{t t}=u_{x x},
$$

with initial and boundary conditions:

$$
u(x, 0)=0, \quad u_{t}(x, 0)=15 \sin 5 x, \quad \text { and } \quad u(0, t)=u(\pi, t)=0 .
$$

C-2. Let $u(x, y)$ satisfy $\Delta u-u=0$ in a bounded region $\Omega \subset \mathbb{R}^{2}$ with $u(x, y)=0$ on the boundary of Ω. Use Green's identity to show that $u(x, y)=0$ throughout Ω.

C -3 . Let $u(x, t)$ be the temperature of a rod of length L that satisfies

$$
u_{t}=u_{x x}-r u \quad \text { for } 0<x<L, \quad t>0,
$$

where $r>0$ is a constant [this is related to the heat equation but assumes that heat radiates out into the air along the rod]. Assume u satisfies the initial condition $u(x, 0)=f(x)$.
Define the total heat energy by $E(t)=\frac{1}{2} \int_{0}^{L} u^{2}(x, t) d x$.
a) If u also satisfies the Dirichlet boundary conditions

$$
u(0, t)=0, \quad u(L, t)=0
$$

(the ends of the rod are held at temperature 0), show that $E(t)$ is a decreasing function of t.
b) Show that even if u satisfies Neumann boundary conditions

$$
u_{x}(0, t)=0, \quad u_{x}(L, t)=0
$$

(the ends of the rod are insulated), $E(t)$ is still a decreasing function of t.
c) [Extra credit!] Show that in either of the above cases $\lim _{t \rightarrow \infty} E(t)=0$.

