Signature

PRINTED NAME

Math 425 March 3, 2011

Exam 1

Jerry L. Kazdan 12:00 – 1:20

DIRECTIONS This exam has three parts, Part A, short answer, has 1 problem (12 points). Part B has 5 shorter problems (7 points each, so 35 points). Part C has 3 traditional problems (15 points each so 45 points). Total is 92 points.

Closed book, no calculators or computers—but you may use one $3'' \times 5''$ card with notes on both sides.

Part A: Short Answer (1 problems, 12 points).

1. Let S and T be linear spaces and $A: S \to T$ be a linear map. Say \mathbf{V} and \mathbf{W} are particular solutions of the equations $A\mathbf{V} = \mathbf{Y}_1$ and $A\mathbf{W} = \mathbf{Y}_2$, respectively, while $\mathbf{Z} \neq 0$ is a solution of the homogeneous equation $A\mathbf{Z} = 0$.

Answer the following in terms of V, W, and Z.

a) Find some solution of $AX = 3Y_1$.

b)	Find	some	solution	of	AX =	$=-5\mathbf{Y}_2$.
----	------	------	----------	----	------	---------------------

c) Find some solution of $AX = 3Y_1 - 5Y_2$.

d)	Find another solution (other than	${f Z}$ and 0) of the homogeneous equa-
	tion $A\mathbf{X} = 0$	

e) Find	two	solutions	of	AX	=	\mathbf{Y}_1	
---	--------	-----	-----------	----	----	---	----------------	--

f) Find another solution of $AX = 3Y_1 - 5Y_2$.

S	'core
A-1	
B-1	
B-2	
В–3	
B-4	
В–5	
C-1	
C-2	
C-3	
Total	

Part B: Short Problems (5 problems, 7 points each so 35 points)

B-1. $\mathbf{U} = (1, 1, 0, 1)$ and $\mathbf{V} = (-1, 2, 1, -1)$ are orthogonal vectors in \mathbb{R}^4 .

Write the vector $\mathbf{X} = (1, 1, 1, 2)$ in the form $\mathbf{X} = a\mathbf{U} + b\mathbf{V} + \mathbf{W}$, where a, b are scalars and \mathbf{W} is a vector perpendicular to \mathbf{U} and \mathbf{V} .

B-2. Find u(x,t) that satisfies $u_x - 2u_t = 1$ with u(x,0) = 0.

Name (print)

3

B-3. Let u(x,t) be a solution of the wave equation

$$u_{tt} = 4u_{xx}$$
, for $-\infty < x < \infty$, $t \ge 0$,

with the (continuous) initial conditions

$$u(x,0) = f(x),$$
 $u_t(x,0) = g(x).$

Find the largest interval $J = \{a \le x \le b\}$ where changing f(x) or g(x) at any point of J can change ("influence") the value of u(0,3). In other words, in the (x,t) plane, find all the points on the x-axis that are in the domain of dependence of (0,3).

B-4. Find the general solution u(x,y) of $u_{xy} = 4y$.

B-5. Let u(x,y) and v(x,y) be a solutions of the Laplace equation $\Delta u=0$, $\Delta v=0$ in a bounded region Ω in the plane. If u>v on the boundary of Ω , what, if anything, can you conclude about the relationship between u and v inside Ω ? Justify your assertion.

Name (print)

5

Part C: Traditional Problems (3 problems, 15 points each so 45 points)

C–1. Find the motion u(x,t) of a clamped string $\{0 \le x \le \pi\}$

$$u_{tt} = u_{xx},$$

with initial and boundary conditions:

$$u(x,0) = 0$$
, $u_t(x,0) = 15\sin 5x$, and $u(0,t) = u(\pi,t) = 0$.

Name	(print)	

C–2. Let u(x,y) satisfy $\Delta u - u = 0$ in a bounded region $\Omega \subset \mathbb{R}^2$ with u(x,y) = 0 on the boundary of Ω . Use Green's identity to show that u(x,y) = 0 throughout Ω .

C-3. Let u(x,t) be the temperature of a rod of length L that satisfies

$$u_t = u_{xx} - ru$$
 for $0 < x < L$, $t > 0$,

where r > 0 is a constant [this is related to the heat equation but assumes that heat radiates out into the air along the rod]. Assume u satisfies the initial condition u(x,0) = f(x).

Define the total heat energy by $E(t) = \frac{1}{2} \int_0^L u^2(x,t) dx$.

a) If u also satisfies the Dirichlet boundary conditions

$$u(0,t) = 0,$$
 $u(L,t) = 0$

(the ends of the rod are held at temperature 0), show that E(t) is a decreasing function of t.

b) Show that even if u satisfies Neumann boundary conditions

$$u_x(0,t) = 0, \qquad u_x(L,t) = 0$$

(the ends of the rod are insulated), E(t) is still a decreasing function of t.

c) [Extra credit!] Show that in either of the above cases $\lim_{t\to\infty} E(t) = 0$.