Problem Set 9

Due: In class Thursday, Apr. 11. Late papers will be accepted until 1:00 PM Friday.
Lots of problems. Fortunately many are short.

1. This asks you to come up with four examples. In each case, find a real matrix (perhaps 2×2) that is:
a) Both invertible and diagonalizable.
b) Not invertible, but diagonalizable.
c) Not diagonalizable but is invertible.
d) Neither invertible nor diagonalizable.
2. Let $A:=\left(\begin{array}{rr}1 & -1 \\ 2 & 1\end{array}\right)$.
a) Find the eigenvalues of A.
b) Is the origin a stable equilibrium of the discrete dynamical system $\vec{x}_{k+1}=A \vec{x}_{k}$? Explain.
3. [Bretscher, Sec. $7.5 \# 14]$ Let $A=\left(\begin{array}{ll}1 & -2 \\ 1 & -1\end{array}\right)$. Find an invertible matrix S so that $S^{-1} A S=\left(\begin{array}{rr}a & -b \\ b & a\end{array}\right)$.
4. [Bretscher, Sec. $7.6 \# 18]$ If $\vec{x}(t+1)=A \vec{x}(t)$, where $A:=\left(\begin{array}{cc}-0.8 & 0.6 \\ -0 / 8 & -0.8\end{array}\right)$ and $\vec{x}(0)=\binom{0}{1}$, find a real closed formula for the trajectory $\vec{x}(t)$. Also, draw a rough sketch.
5. [Bretscher, Sec. $7.5 \# 24]$ Find all the eigenvalues of $\left(\begin{array}{rrr}0 & 1 & 0 \\ 0 & 0 & 1 \\ 5 & -7 & 3\end{array}\right)$.
6. [Bretscher, $5^{\text {th }}$ ed Sec. $7.5 \# 32(\mathrm{~A})$] Consider the dynamical system $\vec{x}(t+1)=$ $A \vec{x}(t)$, where $A:=\left(\begin{array}{ccc}0.4 & 0.1 & 0.5 \\ 0.4 & 0.3 & 0.1 \\ 0.2 & 0.6 & 0.4\end{array}\right)$, perhaps modeling the way people search a miniweb. Using technology (say the Maple example I did in class:
http://hans.math.upenn.edu/~kazdan/312S13/Maple/MarkovChain.mw),
compute high powers of A, say A^{6}, A^{16} and A^{32}), and make a conjecture about $\lim _{t \rightarrow \infty} A^{t}$.
7. [BRETSCHER, SEc. $7.3 \# 28$] Let $B:=\left(\begin{array}{cccc}k & 1 & 0 & 0 \\ 0 & k & 1 & 0 \\ 0 & 0 & k & 1 \\ 0 & 0 & 0 & k\end{array}\right)$ where k is an arbitrary constant. Find the eigenvalue(s) of B and determine both their algebraic and geometric multiplicities. [Note: First try the analogous 2×2 case.]
8. Let A be an $n \times n$ real matrix. If A is orthogonally similar to a real diagonal matrix D, must A be symmetric? Proof or counterexample [The matrices A and B are orthogonally similar if $A=R B R^{-1}$ for some orthogonal matrix R.]
9. [BRETSCHER, SEC. 8.1 \#24] Find an orthonormal eigenbasis for $\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$.
10. [Bretscher, Sec. 8.1 \#38] Let A be a symmetric 2×2 matrix with eigenvalues -2 and 3 and $u \in \mathbb{R}^{2}$ any unit vector. What are the possible values of $\langle u, A u\rangle$? Illustrate your answer in terms of the unit circle and its image under A.
11. Of the following three matrices, one can be orthogonally diagonalized; one can be diagonalized (but not orthogonally); and one cannot be diagonalized at all. Identify these - fully explaining your reasoning.

$$
A=\left[\begin{array}{lll}
0 & 3 & 1 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{lll}
0 & 3 & 1 \\
3 & 0 & 2 \\
1 & 2 & 0
\end{array}\right], \quad C=\left[\begin{array}{lll}
3 & 1 & 3 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right] .
$$

12. [Bretscher, Sec. 8.2 \#18] Sketch the curve of points in the plane that satisfy $9 x_{1}^{2}-4 x_{1} x_{2}+6 x_{2}^{2}=1$.
13. a) Let $D:=\left(\begin{array}{cc}4 & 0 \\ 0 & 25\end{array}\right)$ Find a positive definite symmetric matrix P so that $P^{2}=D$ (we call P the square root of D)
b) Let $A:=\left(\begin{array}{cc}10 & 6 \\ 6 & 10\end{array}\right)$. Find a positive definite (symmetric) matrix P so that $P^{2}=$ A.
c) Show that every positive definite symmetric matrix A has a positive definite square root.
14. [Bretscher, Sec. 8.2 \#28] Show that any positive definite $n \times n$ matrix A can be written as $A=B B^{*}$, where the columns of B are orthogonal. [Hint: Use the result of the previois problem.]
15. [Bretscher, Sec. 8.2 \#26] Consider the quadratic polynomial $Q(\vec{x}):=\langle\vec{x}, A \vec{x}\rangle$, where A is a real $n \times n$ symmetric matrix. "If for some vector $\vec{v} \neq 0$ we know that $Q(\vec{v})=0$, then A cannot be invertible." Proof or counterexample.
16. Let $f(x, y):=\left(x^{2}+4 y^{2}\right) e^{\left(1-x^{2}-y^{2}\right)}$. Find and classify all of its critical points as local maxima etc.
[Last revised: May 5, 2013]
