Problem Set 7

Due: In class Thursday, Mar. 28 Late papers will be accepted until 1:00 PM Friday.

1. [Bretscher ($5^{\text {th }}$ edition, Sec. $\left.5.5 \# 39\right]$ The following table lists the estimated number of genes and the estimated number of cell types for various organisms:

Organism	Number of Genes, g	Number of Cell Types
Humans	600,000	250
Annelid worms	200,000	60
Jellyfish	60,000	25
Sponges	10,000	12
Yeasts	2,500	5

a) Fit a function of the form $\log z=c_{0}+c_{1} \log g$ to the data points $\left(\log g_{i}, \log z_{i}\right)$, using least squares.
b) Use this to fit a power function $z=k g^{n}$ to the data points $\left(g_{i}, z_{i}\right)$.
2. Say $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear map with the property that $A^{2}-3 A+2 I=0$. If $\vec{v} \neq 0$ is an eigenvector of A with eigenvalue λ, so $A \vec{v}=\lambda \vec{v}$, what are the possible values of λ ?
3. Let A be an $n \times n$ matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ and corresponding eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$. Say $\vec{x}=c_{1} \vec{v}_{1}+\cdots+c_{n} \vec{v}_{n}$.
a) Compute $A \vec{x}, A^{2} \vec{x}$, and $A^{3} \vec{x}$ in terms of the c_{i}, λ_{i} and $\vec{v}_{i}, i=1, \ldots, n$.
b) If $\lambda_{1}=1$ and the remaining λ_{j} satisfy $\left|\lambda_{j}\right|<1, j=2, \ldots, n$, compute $\lim _{k \rightarrow \infty} A^{k} \vec{x}$. [This arises in the study of Markov Chains].
4. [Bretscher Sec. 7.1 \#68 (=\#50 in the 4th Edition)] Two interacting populations of hares and foxes can be modeled by the recursive equations

$$
\begin{aligned}
& h(t+1)=4 h(t)-2 f(t) \\
& f(t+1)=h(t)+f(t) .
\end{aligned}
$$

For each of the initial populations given in parts a)-c) below, find closed formulas for $h(t)$ and $f(t)$.
a) $h(0)=f(0)=100$.
b) $h(0)=200, f(0)=100$.
c) $h(0)=600, f(0)=500$.
5. Let $A:=\left(\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}\right)$ and $B:=\left(\begin{array}{lllll}3 & 1 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 & 1 \\ 1 & 1 & 3 & 1 & 1 \\ 1 & 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 1 & 3\end{array}\right)$.
a) Compute the dimension of the image of A and of the kernel of A.
b) Find a basis for the image of A and the kernel of A.
c) Compute the trace of A.
d) Find the eigenvalues and eigenvectors of A
e) Find the trace, determinant, eigenvalues and eigenvectors of B.
f) Is B invertible? If so, compute B^{-1}.
6. Combine the rank-nullity Theorem 3.3 .7 with Theorem 5.4 .1 , which says $(\operatorname{im} A)^{\perp}=$ $\operatorname{ker}\left(A^{*}\right)$, to show that $\operatorname{rank} A=\operatorname{rank} A^{*}$, that is, $\operatorname{dim} \operatorname{im}(A)=\operatorname{dim} \operatorname{im}\left(A^{*}\right)$.
7. Let $A: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ be a linear map. Show that $\operatorname{dim} \operatorname{ker} A-\operatorname{dim} \operatorname{ker} A^{*}=k-n$.

Bonus Problem
 [Please give this directly to Professor Kazdan]

1-B Let U, V, and W be finite dimensional vector spaces with inner products. If $A: U \rightarrow$ V and $B: V \rightarrow W$ are linear maps with adjoints A^{*} and B^{*}, define the linear map $C: V \rightarrow V$ by

$$
C=A A^{*}+B^{*} B
$$

If the sequence of maps $U \xrightarrow{A} V \xrightarrow{B} W$ has the property image $(A)=\operatorname{ker}(B)$, show that C maps V to V and that it is invertible. [Suggestion: Use Theorem 5.4.1]
[Last revised: May 5, 2013]

