Problem Set 5

Due: In class Thursday, Feb. 21 Late papers will be accepted until 1:00 PM Friday.
In addition to the problems below, you should also know how to solve the following problems from the text. Most are simple exercises. These are not to be handed in.

Sec. 5.1, \#28, 29, 31
Sec. $5.2 \# 33$
Remark: We will not cover the material on QR factorization. It is an important numerical technique - but our time is short.

1. [Bretscher, Sec. $5.1 \# 16]$ Consider the following vectors in \mathbb{R}^{4}

$$
\vec{u}_{1}=\left(\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right), \quad \vec{u}_{2}=\left(\begin{array}{r}
1 / 2 \\
1 / 2 \\
-1 / 2 \\
-1 / 2
\end{array}\right), \quad \vec{u}_{3}=\left(\begin{array}{r}
1 / 2 \\
-1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right) .
$$

Can you find a vector u_{4} in \mathbb{R}^{4} such that the vectors $\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}, \vec{u}_{4}$ are orthonormal? If so, how many such vectors are there?
2. [Bretscher, Sec. 5.1 \#17] Find a basis for W^{\perp}, where

$$
W=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right),\left(\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right)\right\}
$$

3. [Bretscher, Sec. 5.1 \#21] Find scalars a, b, c, d, e, f, and g so that the following vectors are orthonormal:

$$
\left(\begin{array}{l}
a \\
d \\
f
\end{array}\right), \quad\left(\begin{array}{l}
b \\
1 \\
g
\end{array}\right), \quad\left(\begin{array}{c}
c \\
e \\
1 / 2
\end{array}\right) .
$$

4. Let V be an inner product space and S a subspace. Then we write S^{\perp} for the set of all vectors in V that are orthogonal to S. It is called the orthogonal complement of S, and clearly is also a subspace of V.
a) In \mathbb{R}^{3}, let S be the points $\left(x_{1}, x_{2}, x_{3}\right)$ that satisfy $x_{1}-2 x_{2}+x_{3}=0$. What is the dimension of S^{\perp} ? [This should be a simple mental exercise.]
b) Let $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{5}$. If the dimension of the kernel of A is 2 , what is the dimension of image $(A)^{\perp}$?
5. [Bretscher, Sec. 5.1 \#26] Find the orthogonal projection P_{S} of $\vec{x}:=\left(\begin{array}{l}49 \\ 49 \\ 49\end{array}\right)$ into the subspace S of \mathbb{R}^{3} spanned by $\vec{v}_{1}:=\left(\begin{array}{l}2 \\ 3 \\ 6\end{array}\right)$ and $\vec{v}_{2}:=\left(\begin{array}{r}3 \\ -6 \\ 2\end{array}\right)$.
6. [Bretscher, Sec. 5.1 \#37] Consider a plane V in \mathbb{R}^{3} with orthonormal basis \vec{u}_{1} and \vec{u}_{2}. Let \vec{x} be a vector in \mathbb{R}^{3}. Find a formula for the reflection $R \vec{x}$ of \vec{x} across the plane V. Your answer will involve $P_{V} \vec{x}$, the orthogonal projection of \vec{x} into the plane V. [Suggestion: Use that $\left(I-P_{V}\right) \vec{x}$ is the component of \vec{x} that is orthogonal to V. In a reflection, this is the part of \vec{x} that is flipped.]
7. [Bretscher, Sec. 5.2 \#32] Find an orthonormal basis for the plane $x_{1}+x_{2}+x_{3}=0$.
8. [Bretscher, Sec. 5.3 \#10] Consider the space $\mathcal{P} \in$ of real polynomials of degree at most 2 with the inner product

$$
\langle f, g\rangle=\frac{1}{2} \int_{-1}^{1} f(t) g(t) d t
$$

Find an orthonormal basis for all the functions in \mathcal{P}_{2} that are orthogonal to $f(t)=t$.
9. [Bretscher, Sec. 5.3 \#16] Consider the space \mathcal{P}_{1} with the inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

a) Find an orthonormal basis for this space. [Suggestion: Let $e_{1}(t=1$ and pick $e_{2}(t)=a+b t$ to be orthogonal to e_{1}.]
b) Find the linear polynomial $g(t)=a+b t$ that best approximates the polynomial $f(t)=t^{2}$. Thus, one wants to pick $g(t)$ so that $\|f-g\|$ is as small as possible. [Question: In an inner product space V, if you have a subspace $S \subset V$ and a vector $\vec{y} \in V$, how can you find the vector in S that is closest to \vec{y} ?]
10. [See http://www.math.upenn.edu/~kazdan/312S13/notes/Lu=-DDu.pdf] Consider the space $C_{0}^{2}[0,1]$ of twice continuously differentiable functions $u(x)$ with $u(0)=0$ and
$u(1)=0$. Define the differential operator $M u$ by the formula $M u=-\left(\left(1+x^{2}\right) u^{\prime}\right)^{\prime}$. Using the inner product

$$
\langle u, v\rangle:=\int_{0}^{1} u(x) v(x) d x
$$

find the adjoint M^{*} (you should find that M is self-adjoint). Note that v must also satisfy the same boundary conditions as u does $(v(0)=0$ and $v(1)=0)$.

The remaining problems are from the Lecture notes on Vectors
http://www.math.upenn.edu/~kazdan/312F12/notes/vectors/vectors8.pdf
11. [p. $8 \# 5$] The origin and the vectors X, Y, and $X+Y$ define a parallelogram whose diagonals have length $X+Y$ and $X-Y$. Prove the parallelogram law

$$
\|X+Y\|^{2}+\|X-Y\|^{2}=2\|X\|^{2}+2\|Y\|^{2}
$$

This states that in a parallelogram, the sum of the squares of the lengths of the diagonals equals the sum of the squares of the four sides.
12. [p. 8 \#6] (Math 240 Review)
a) Find the distance from the straight line $3 x-4 y=10$ to the origin. [It may help to observe that this line is parallel to the plane $3 x-4 y=0$, whose normal vector is clearly $\vec{N}=(3,-4)$.]
b) Find the distance from the plane $a x+b y+c z=d$ to the origin (assume the vector $\vec{N}=(a, b, c) \neq 0)$.
13. [p. $8 \# 8$]
a) If X and Y are real vectors, show that

$$
\langle X, Y\rangle=\frac{1}{4}\left(\|X+Y\|^{2}-\|X-Y\|^{2}\right) .
$$

This formula is the simplest way to recover properties of the inner product from the norm.
b) As an application, show that if a square matrix R has the property that it preserves length, so $\|R X\|=\|X\|$ for every vector X, then it preserves the inner product, that is, $\langle R X, R Y\rangle=\langle X, Y\rangle$ for all vectors X and Y.
14. [p. $9 \# 10$] (Also done in class)
a) If a certain matrix C satisfies $\langle X, C Y\rangle=0$ for all vectors X and Y, show that $C=0$.
b) If the matrices A and B satisfy $\langle X, A Y\rangle=\langle X, B Y\rangle$ for all vectors X and Y, show that $A=B$.
15. [p. $9 \# 11-12]$ A matrix A is called anti-symmetric (or skew-symmetric) if $A^{*}=$ $-A$.
a) Give an example of a 3×3 anti-symmetric matrix (other than the trivial $A=0$).
b) If A is any anti-symmetric matrix, show that $\langle X, A X\rangle=0$ for all vectors X.
c) Say $X(t)$ is a solution of the differential equation $\frac{d X}{d t}=A X$, where A is an antisymmetric matrix. Show that $\|X(t)\|=$ constant. [Remark: A special case is that $X(t):=\binom{\cos t}{\sin t}$ satisfies $X^{\prime}=A X$ with $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ so this problem gives another proof that $\cos ^{2} t+\sin ^{2} t=1$.]
[Last revised: May 5, 2013]

