Problem Set 4

Due: In class Thurs. Feb. 7 [Late papers will be accepted until 1:00 on Friday].
Reminder: Exam 1 is on Tuesday, Feb. 12, 9:00-10:20. No books or calculators but you may always use one 3 " $\times 5$ " card with handwritten notes on both sides.

1. a). Use Theorems from Section 3.3 (or from class) to explain the following carefully.
a) If V and W are subspaces with V contained inside of W, why is $\operatorname{dim} V \leq \operatorname{dim} W$?
b) If $\operatorname{dim} V=\operatorname{dim} W$, explain why $V=W$.
2. Let A be a square matrix. If A^{2} is invertible, show that A is invertible.
3. Find a linear map $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ whose kernel is exactly the plane

$$
\left\{\left(x_{1}, x_{2}, x_{3}\right) \subset \mathbb{R}^{3} \mid x_{1}+2 x_{2}-x_{3}=0\right\}
$$

4. In class we considered the interpolation problem of finding a polynomial of degree n passing through $n+1$ specified distinct points in the plane. To be definite, take $n=3$, and say our points are $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)$, and $\left(a_{4}, b_{4}\right)$. This problem involves \mathcal{P}_{3}, and so we could work in the usual basis $\left\{1, x, x^{2}, x^{3}\right\}$. However, it is easier to use the Lagrange basis. The point of this problem is to see vividly why choosing a basis adapted to the problem may involve much less work.
a) Setup the linear equations you would need to solve to find the polynomial of degree 3 passing through the points $(0,-3),(1,-1),(2,11)$, and $(-1,-7)$ if you use the usual basis $\left\{1, x, x^{2}, x^{3}\right\}$. But don't take time to solve these.
b) Solve the same problem explicitly using the Lagrange basis.
5. [Bretscher, Sec. 2.4 \#35] An $n \times n$ matrix A is called upper triangular if all the elements below the main diagonal, $a_{11} a_{22}, \ldots a_{n n}$ are zero, that is, if $i>j$ then $a_{i j}=0$.
a) Let A be the upper triangular matrix

$$
A=\left(\begin{array}{lll}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right)
$$

For which values of a, b, c, d, e, f is A invertible? Hint: Write out the equations $A X=Y$ explicitly.
b) If A is invertible, is its inverse also upper triangular?
c) Show that the product of two $n \times n$ upper triangular matrices is also upper triangular.
d) Show that an upper triangular $n \times n$ matrix is invertible if none of the elements on the main diagonal are zero.
e) Conversely, if an upper triangular $n \times n$ matrix is invertible show that none of the elements on the main diagonal can be zero.
6. [See Bretscher, Sec. $3.2 \# 6$] Let U and V both be two-dimensional subspaces of \mathbb{R}^{5}, and let $W=U \cap V$. Find all possible values for the dimension of W.
7. [See Bretscher, Sec. $3.2 \# 50$] Let U and V both be two-dimensional subspaces of \mathbb{R}^{5}, and define the set $W:=U+V$ as the set of all vectors $w=u+v$ where $u \in U$ and $v \in V$ can be any vectors.
a) Show that W is a linear space.
b) Find all possible values for the dimension of W.
8. Say you have k linear algebraic equations in n variables; in matrix form we write $A \vec{x}=\vec{y}$. Give a proof or counterexample for each of the following.
a) If $n=k$ there is always at most one solution.
b) If $n>k$ you can always solve $A \vec{x}=\vec{y}$.
c) If $n>k$ the nullspace ($=$ kernel) of A has dimension greater than zero.
d) If $n<k$ then for some \vec{y} there is no solution of $A \vec{x}=\vec{y}$.
e) If $n<k$ the only solution of $A \vec{x}=0$ is $\vec{x}=0$.
9. [Bretscher, Sec. $3.3 \# 30$] Find a basis for the subspace of \mathbb{R}^{4} defined by the equation $2 x_{1}-x_{2}+2 x_{3}+4 x_{4}=0$.
10. Let V the vector space of $n \times n$ matrices A with real entries. Define a transformation $L: V \rightarrow V$ where $L(A)=\frac{1}{2}\left(A+A^{T}\right)$. (Here, A^{T} is the matrix transpose of A.)
a) Verify that L is linear. You may use familiar facts about transpose.
b) Describe the image of L, and find its dimension.
c) Describe the kernel of L, and find its dimension.
d) Verify the rank and nullity add up what you would expect. (Final note: L is called the symmetrization operator.)
11. Let \mathcal{P}_{2} be the linear space of polynomials of degree at most 2 and $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ be the transformation

$$
(T(p))(t)=\frac{1}{t} \int_{0}^{t} p(s) d s
$$

For instance, if $p(t)=2+3 t^{2}$, then $T(p)=2+t^{2}$.
a) Prove that T is a linear transformation.
b) Find the kernel of T, and find its dimension.
c) Find the range (=image) of T, and compute its dimension.
d) Verify the dimension of the kernel and the dimension of the range add up to what you would expect.
e) Using the standard basis $\left\{1, t, t^{2}\right\}$ for \mathcal{P}_{2}, represent the linear transformation T as a matrix A.
f) Using your matrix represention from (e), find $T(p)$ where $p(t)=t-2$.

Bonus Problem

[Please give this directly to Professor Kazdan]
1-B Let $L: V \rightarrow V$ be a linear map on a linear space V.
a) Show that $\operatorname{ker} L \subset \operatorname{ker} L^{2}$ and, more generally, $\operatorname{ker} L^{k} \subset \operatorname{ker} L^{k+1}$ for all $k \geq 1$.
b) If $\operatorname{ker} L^{j}=\operatorname{ker} L^{j+1}$ for some integer j, show that $\operatorname{ker} L^{k}=\operatorname{ker} L^{k+1}$ for all $k \geq j$.
c) Let A be an $n \times n$ matrix. If $A^{j}=0$ for some integer j (perhaps $j>n$), show that $A^{n}=0$.
[Last revised: May 5, 2013]

