Problem Set 2

DUE: In class Thursday, Jan. 24 Late papers will be accepted until 1:00 PM Friday.

Lots of problems. Most are really short.

In addition to the problems below, you should also know how to solve *all* of the problems in Chapters 1 and 2 of the text, particularly those at the beginning of each of the problem sets for each section. Most are simple mental exercises.

1. Consider the system of equations

$$x + y - z = a$$

$$x - y + 2z = b$$

$$3x + y = c$$

- a) Find the general solution of the homogeneous equation.
- b) If a = 1, b = 2, and c = 4, then a particular solution of the inhomogeneous equations is x = 1, y = 1, z = 1. Find the most general solution of these inhomogeneous equations.
- c) If a = 1, b = 2, and c = 3, show these equations have no solution.
- 2. [Bretscher, Sec.2.2 #10] Let \mathcal{L} be the line in \mathbb{R}^2 that consists of all scalar multiples of the vector (4,3). Find the matrix of the orthogonal projection onto this line \mathcal{L} .
- 3. [Bretscher, Sec.2.2 #17] Let $A := \begin{pmatrix} a & b \\ b & -a \end{pmatrix}$, where $a^2 + b^2 = 1$. Find two perpendicular non-zero vectors \vec{v} and \vec{w} so that $A\vec{v} = \vec{v}$ and $A\vec{w} = -\vec{w}$ (write the entries of \vec{v} and \vec{w} in terms of a and b). Conclude that thinking of A as a linear map it is an orthogonal reflection across the line \mathcal{L} spanned by \vec{v} .
- 4. [Bretscher, Sec.2.2 #31] Find a nonzero 3×3 matrix A so that $A\vec{x}$ is perpendicular to $\vec{v} := (1, 2, 3)$ for all vectors $\vec{x} \in \mathbb{R}^3$. [There are many examples. You are only asked to find one example.]
- 5. [Deleted. This was already on Homework Set 1]
- 6. [Bretscher, Sec.2.3 #48]
 - a) If $A := \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ and $B := \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$, compute AB and A^{10} .
 - b) Find a 2×2 matrix A so that $A^{10} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- 7. Which of the following sets are linear spaces?

- a) $\{\vec{x} = (x_1, x_2, x_3) \text{ in } \mathbb{R}^3 \text{ with the property } x_1 2x_3 = 0\}$
- b) The set of solutions x of Ax = 0, where A is an $m \times n$ matrix.
- c) The set of polynomials p(x) with $\int_{-1}^{1} p(x) dx = 0$.
- d) The set of solutions y = y(t) of y'' + 4y' + y = 0 (you are *not* being asked to actually find these solutions).
- 8. Proof or counterexample. In these L is a linear map from \mathbb{R}^2 to \mathbb{R}^2 , so its representation will be as a 2×2 matrix.
 - a) If L is invertible, then L^{-1} is also invertible.
 - b) If $L\vec{v} = 5\vec{v}$ for all vectors \vec{v} and $M\vec{w} = (1/5)\vec{w}$ for all vectors \vec{w} , then L is invertible and $L^{-1} = M$.
 - c) If L is a rotation of the plane by 45 degrees *counterclockwise*, then L^{-1} is a rotation by 45 degrees *clockwise*.
 - d) If L is a rotation of the plane by 45 degrees counterclockwise, then L^{-1} is a rotation by 315 degrees counterclockwise.
 - e) The zero map $(0\vec{v} := 0 \text{ for all vectors } \vec{v})$ is invertible.
 - f) The identity map $(I\vec{v} := \vec{v} \text{ for all vectors } \vec{v})$ is invertible.
 - g) If L is invertible, then $L^{-1}0 = 0$.
 - h) If $L\vec{v} = 0$ for some non-zero vector \vec{v} , then L is not invertible.
 - i) The identity map (say from the plane to the plane) is the only linear map that is its own inverse: $L = L^{-1}$.

9. Think of the matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ as mapping one plane to another.

a) If two lines in the first plane are parallel, show that after being mapped by A they are also parallel – although they might coincide.

[REMARK: The simplest way to describe a straight line in \mathbb{R}^2 (or even \mathbb{R}^n) that passes through two points, say P and Q, is to think of this line as the path $\vec{x}(t)$ of a particle at time t with $\vec{x}(t) = P + t\vec{v}$ where $\vec{v} = Q - P$ and $-\infty < t < \infty$. For any point \hat{P} the line $\vec{y}(t) = \hat{P} + t\vec{w}$ is *parallel* to $\vec{x}(t)$ if $\vec{w} = c\vec{v}$ for some scalar c. Here we are assuming $\vec{v} \neq 0$ and $\vec{w} \neq 0$.]

b) Let Q be the unit square: 0 < x < 1, 0 < y < 1 and let Q' be its image under this map A. Give a geometric argument to show that the $\operatorname{area}(Q') = |ad - bc|$. [For simplicity in your figure assume the points (a, c) and (b, d) are in the first quadrant with a > b and c < d and use the rectangle with vertices at (0, 0), (a + b, 0), (a + b, c + d), and (0, c + d).] [More generally, the area of any region is magnified by |ad - bc|, which is called the *determinant* of A.]

- 10. Let A be a matrix, not necessarily square. Say \vec{v} and \vec{w} are particular solutions of the equations $A\vec{v} = \vec{y_1}$ and $A\vec{w} = \vec{y_2}$, respectively, while $\vec{z} \neq 0$ is a solution of the homogeneous equation $A\vec{z} = 0$. Answer the following in terms of \vec{v} , \vec{w} , and \vec{z} .
 - a) Find some solution of $A\vec{x} = 3\vec{y}_1$.
 - b) Find some solution of $A\vec{x} = -5\vec{y}_2$.
 - c) Find some solution of $A\vec{x} = 3\vec{y}_1 5\vec{y}_2$.
 - d) Find another solution (other than \vec{z} and 0) of the homogeneous equation $A\vec{x} = 0$.
 - e) Find *two* solutions of $A\vec{x} = \vec{y_1}$.
 - f) Find another solution of $A\vec{x} = 3\vec{y}_1 5\vec{y}_2$.
 - g) If A is any square matrix, for any given vector \vec{w} can one always find at least one solution of $A\vec{x} = \vec{w}$? Why?
- 11. Let V be the linear space of smooth real-valued functions and $L: V \to V$ the linear map defined by Lu := u'' + u.
 - a) Compute $L(e^{2x})$ and L(x).
 - b) Find particular solutions of the inhomogeneous equations

a).
$$u'' + u = 7e^{2x}$$
, b). $w'' + w = 4x$, c). $z'' + z = 7e^{2x} - 3x$

12. Let $A: \mathbb{R}^3 \to \mathbb{R}^2$ and $B: \mathbb{R}^2 \to \mathbb{R}^3$, so $BA: \mathbb{R}^3 \to \mathbb{R}^3$ and $AB: \mathbb{R}^2 \to \mathbb{R}^2$.

- a) Why must there be a non-zero vector $\vec{x} \in \mathbb{R}^3$ such that $A\vec{x} = 0$.
- b) Show that the 3×3 matrix *BA* can *not* be invertible.
- c) Give an example showing that the 2×2 matrix AB might be invertible.

[Last revised: May 5, 2013]