Final Exam: Wednesday, May 1, 12:00-2:00 in DRL A-1. Closed book, no calculators, but you may use one 3×5 card with notes on both sides.

Problem Set 10

Due: Tuesday, April 23 [Late papers will be accepted until 1:00 on Wednesday].

1. Let A be a positive definite (symmetric) matrix. Show there is a change of variables $\vec{y}=P \vec{x}$, where P is an invertible symmetric matrix, so that $\langle\vec{x}, A \vec{x}\rangle=\langle\vec{y}, \vec{y}\rangle$.
2. a) In \mathbb{R}^{2}, for which values of the constant c is the line $x_{1}+2 x_{2}=c$ tangent to the circle $x_{1}^{2}+x_{2}^{2}=4$?
b) In \mathbb{R}^{2}, for which values of the constant c is the line $x_{1}+2 x_{2}=c$ tangent to the ellipse $x_{1}^{2}+4 x_{2}^{2}=4$?
c) In \mathbb{R}^{2}, for which values of the constant c is the line $x_{1}+2 x_{2}=c$ tangent to the ellipse $x_{1}^{2}+4 x_{1} x_{2}+6 x_{2}^{2}=4$?
d) Let A be a positive definite 2×2 matrix and \vec{N} a unit vector in \mathbb{R}^{2}. For which values of the constant c is the line $\langle\vec{N}, \vec{x}\rangle=c$ tangent to the ellipse $\langle\vec{x}, A \vec{x}\rangle=1$?
3. Compute
a) $\iint_{\mathbb{R}^{2}} \frac{d x d y}{\left(1+4 x^{2}+9 y^{2}\right)^{2}}$.
b) $\iint_{\mathbb{R}^{2}} \frac{d x d y}{\left(1+x^{2}+2 x y+5 y^{2}\right)^{2}}$.
c) Compute $\iint_{\mathbb{R}^{2}} \frac{d x_{1} d x_{2}}{[1+\langle x, C x\rangle]^{2}}$, where C is a positive definite (symmetric) 2×2 matrix, and $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$.
4. a) Compute $\iint_{\mathbb{R}^{2}} e^{-\left(x^{2}-4 x y+5 y^{2}\right)} d x d y$.
b) Compute $\iint_{\mathbb{R}^{2}} e^{-\left(x^{2}-4 x y+5 y^{2}-2 x+4 y+3\right)} d x d y$. [SugGestion: Use Homework Set $6 \# 9$.]
c) Let A be a positive definite 2×2 matrix and $\vec{b} \in \mathbb{R}^{2}$. Generalize the previous part to obtain a formula for

$$
\iint_{\mathbb{R}^{2}} e^{-(\langle\vec{x}, A \vec{x}\rangle+2\langle\vec{b}, \vec{x}\rangle+c)} d x_{1} d x_{2} .
$$

5. Let A be an $n \times n$ symmetric matrix with eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$. Show that

$$
\langle\vec{x}, A \vec{x}\rangle \leq \lambda_{n}\|\vec{x}\|^{2} \quad \text { for any } \vec{x} \in \mathbb{R}^{n} .
$$

6. [Bretscher, Sec. 8.3 \#12] Find the singular value decomposition (SVD) of the matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 1 \\ 1 & 0\end{array}\right)$.
7. Consider the matrix $\left(\begin{array}{rr}2 & -1 \\ 2 & 2\end{array}\right)$.
a) If $\vec{x} \in \mathbb{R}^{2}$ is a unit vector, what is the largest $\|A \vec{x}\|$ can be?
b) Find the SVD of A.
c) Using part (b), find a rank one approximation to A
8. [BRETSCHER, SEC. 8.3 \#24] If A is a symmetric $n \times n$ matrix, what is the relationship between the eigenvalues and singular values of A ?
[Last revised: May 5, 2013]
