Final Exam: Wednesday, May 1, 12:00-2:00 in DRL A-1. Closed book, no calculators, but you may use one 3×5 card with notes on both sides.

Problem Set 10

DUE: Tuesday, April 23 [Late papers will be accepted until 1:00 on Wednesday].

- 1. Let A be a positive definite (symmetric) matrix. Show there is a change of variables $\vec{y} = P\vec{x}$, where P is an invertible symmetric matrix, so that $\langle \vec{x}, A\vec{x} \rangle = \langle \vec{y}, \vec{y} \rangle$.
- 2. a) In \mathbb{R}^2 , for which values of the constant c is the line $x_1 + 2x_2 = c$ tangent to the circle $x_1^2 + x_2^2 = 4$?
 - b) In \mathbb{R}^2 , for which values of the constant c is the line $x_1 + 2x_2 = c$ tangent to the ellipse $x_1^2 + 4x_2^2 = 4$?
 - c) In \mathbb{R}^2 , for which values of the constant c is the line $x_1 + 2x_2 = c$ tangent to the ellipse $x_1^2 + 4x_1x_2 + 6x_2^2 = 4$?
 - d) Let A be a positive definite 2×2 matrix and \vec{N} a unit vector in \mathbb{R}^2 . For which values of the constant c is the line $\langle \vec{N}, \vec{x} \rangle = c$ tangent to the ellipse $\langle \vec{x}, A\vec{x} \rangle = 1$?
- 3. Compute

a)
$$\iint_{\mathbb{R}^2} \frac{dx \, dy}{(1+4x^2+9y^2)^2}.$$

b)
$$\iint_{\mathbb{R}^2} \frac{dx \, dy}{(1+x^2+2xy+5y^2)^2}.$$

- c) Compute $\iint_{\mathbb{R}^2} \frac{dx_1 dx_2}{[1 + \langle x, Cx \rangle]^2}$, where *C* is a positive definite (symmetric) 2×2 matrix, and $x = (x_1, x_2) \in \mathbb{R}^2$.
- 4. a) Compute $\iint_{\mathbb{R}^2} e^{-(x^2-4xy+5y^2)} dx dy$. b) Compute $\iint_{\mathbb{R}^2} e^{-(x^2-4xy+5y^2-2x+4y+3)} dx dy$. [SUGGESTION: Use Homework Set 6 #9.]
 - c) Let A be a positive definite 2×2 matrix and $\vec{b} \in \mathbb{R}^2$. Generalize the previous part to obtain a formula for

$$\iint_{\mathbb{R}^2} e^{-(\langle \vec{x}, A\vec{x} \rangle + 2\langle \vec{b}, \vec{x} \rangle + c)} \, dx_1 \, dx_2.$$

5. Let A be an $n \times n$ symmetric matrix with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. Show that

$$\langle \vec{x}, A\vec{x} \rangle \leq \lambda_n \|\vec{x}\|^2 \text{ for any } \vec{x} \in \mathbb{R}^n.$$

- 6. [BRETSCHER, SEC. 8.3 #12] Find the singular value decomposition (SVD) of the matrix $\begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}$.
- 7. Consider the matrix $\begin{pmatrix} 2 & -1 \\ 2 & 2 \end{pmatrix}$.
 - a) If $\vec{x} \in \mathbb{R}^2$ is a unit vector, what is the largest $||A\vec{x}||$ can be?
 - b) Find the SVD of A.
 - c) Using part (b), find a rank one approximation to A
- 8. [BRETSCHER, SEC. 8.3 #24] If A is a symmetric $n \times n$ matrix, what is the relationship between the eigenvalues and singular values of A?

[Last revised: May 5, 2013]