Linear Combination, Span, Linear Dependent and Independent, ...

Linear space V with vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}$
Linear Combination

$$
a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{k} \vec{v}_{k}
$$

Span

Every vector in V can be written as some linear combination of these:

$$
\vec{x}=a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{k} \vec{v}_{k}
$$

Linearly Independent

If $a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{k} \vec{v}_{k}=0$, then $a_{1}, a_{2}, \ldots a_{k}=0$.

Linearly Dependent

Some \vec{v}_{j} can be written as a linear combination of the others.

Basis

The vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}$ are both linearly independent and span V.

Dimension of V

The number k of vectors in a basis of V.

