Orthogonal Projection

Let V be an inner product space (that is, a linear space with an inner product) and let $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{k}$ be non-zero orthogonal vectors and let \mathcal{S} be the subspace spanned by these \vec{x}_{j} 's. Given a vector $\vec{y} \in V$, we want to write

$$
\begin{equation*}
\vec{y}=a_{1} \vec{x}_{1}+a_{2} \vec{x}_{2}+\cdots+\vec{x}_{k}+\vec{w}, \tag{1}
\end{equation*}
$$

where \vec{w} is orthogonal to \mathcal{S}. This decomposes \vec{y} as the sum of two orthogonal vectors, one in \mathcal{S} and one orthogonal to \mathcal{S}. We often introduce the linear map $P_{\mathcal{S}}$ of orthogonal projection into \mathcal{S}

$$
P_{\mathcal{S}} \vec{y}:=a_{1} \vec{x}_{1}+a_{2} \vec{x}_{2}+\cdots+\vec{x}_{k} .
$$

If we write \mathcal{S}^{\perp} for the orthogonal complement of \mathcal{S}, then $\vec{w}=P_{\mathcal{S}^{\perp}} \vec{y}$, so $\vec{y}=P_{\mathcal{S}} \vec{y}+P_{\mathcal{S}^{\perp}}$. The problem is to find the coefficients a_{j} and the vector \vec{w}. Taking the inner product of both sides of this with \vec{x}_{1} we find that $\left\langle\vec{y}, \vec{x}_{1}\right\rangle=a_{1}\left\langle\vec{x}_{1}, \vec{x}_{1}\right\rangle$ and similarly for the other a_{j} 's. Thus

$$
a_{j}=\frac{\left\langle\vec{y}, \vec{x}_{j}\right\rangle}{\left\|\vec{x}_{j}\right\|^{2}} .
$$

We can now solve equation (1) for \vec{w} and find

$$
\vec{w}=\vec{y}-\left[a_{1} \vec{x}_{1}+a_{2} \vec{x}_{2}+\cdots+\vec{x}_{v}\right] .
$$

Since the \vec{x}_{j} 's and \vec{w} are orthogonal, the Pythagorean theorem applied to (1) tells us that

$$
\|\vec{y}\|^{2}=\left|a_{1}\right|^{2}\left\|\vec{x}_{1}\right\|^{2}+\cdots+\left|a_{k}\right|^{2}\left\|\vec{x}_{k}\right\|^{2}+\|\vec{w}\|^{2} .
$$

In particular, $\|\vec{w}\|^{2}$ gives the square of the distance from \vec{y} to the subspace \mathcal{S}.

Examples

1. Find the distance between the point $\vec{y}=(1,2,-3,0) \in \mathbb{R}^{4}$ and the subspace of points $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$ that satisfy $x_{1}-x_{2}+x_{3}+2 x_{4}=0$.
2. Find the distance between the hyperplane of points $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$ that satisfy $x_{1}-x_{2}+x_{3}+2 x_{4}=2$ and the origin.
3. Find an orthogonal basis for the subspace of \mathbb{R}^{4} spanned by $\vec{u}_{1}=(1,1,0,0)$ and $\vec{u}_{2}=(0,1,1,0)$
4. Find a vector in \mathbb{R}^{4} that is orthogonal to the subapace spanned by $\vec{u}_{1}=(1,1,0,0)$ and $\vec{u}_{2}=(0,1,1,0)$.
5. Find an orthogonal basis for the subspace of \mathbb{R}^{4} spanned by $\vec{u}_{1}=(1,1,0,0), \vec{u}_{2}=$ $(0,1,1,0)$, and $\vec{u}_{3}=(0,0,1,1)$.
6. Find an orthonormal basis for the subapace of \mathbb{R}^{4} determined by $x_{1}-x_{2}+x_{3}-2 x_{4}=0$.
7. Find a vector that is orthogonal to the above subspace.
[Last revised: May 5, 2013]
