Math 312

Orthogonal Projection

Let V be an inner product space (that is, a linear space with an inner product) and let $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$ be non-zero orthogonal vectors and let S be the subspace spanned by these \vec{x}_i 's. Given a vector $\vec{y} \in V$, we want to write

$$\vec{y} = a_1 \vec{x}_1 + a_2 \vec{x}_2 + \dots + \vec{x}_k + \vec{w},\tag{1}$$

where \vec{w} is orthogonal to S. This decomposes \vec{y} as the sum of two orthogonal vectors, one in S and one orthogonal to S. We often introduce the linear map P_S of orthogonal projection into S

$$P_{\mathcal{S}}\vec{y} := a_1\vec{x}_1 + a_2\vec{x}_2 + \dots + \vec{x}_k.$$

If we write S^{\perp} for the orthogonal complement of S, then $\vec{w} = P_{S^{\perp}}\vec{y}$, so $\vec{y} = P_S\vec{y} + P_{S^{\perp}}$. The problem is to find the coefficients a_j and the vector \vec{w} . Taking the inner product of both sides of this with \vec{x}_1 we find that $\langle \vec{y}, \vec{x}_1 \rangle = a_1 \langle \vec{x}_1, \vec{x}_1 \rangle$ and similarly for the other a_j 's. Thus

$$a_j = \frac{\langle \vec{y}, \, \vec{x}_j \rangle}{\|\vec{x}_j\|^2}.$$

We can now solve equation (1) for \vec{w} and find

$$\vec{w} = \vec{y} - [a_1\vec{x}_1 + a_2\vec{x}_2 + \dots + \vec{x}_v].$$

Since the \vec{x}_j 's and \vec{w} are orthogonal, the Pythagorean theorem applied to (1) tells us that

$$\|\vec{y}\|^2 = |a_1|^2 \|\vec{x}_1\|^2 + \dots + |a_k|^2 \|\vec{x}_k\|^2 + \|\vec{w}\|^2.$$

In particular, $\|\vec{w}\|^2$ gives the square of the distance from \vec{y} to the subspace S.

Examples

- 1. Find the distance between the point $\vec{y} = (1, 2, -3, 0) \in \mathbb{R}^4$ and the subspace of points $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ that satisfy $x_1 x_2 + x_3 + 2x_4 = 0$.
- 2. Find the distance between the hyperplane of points $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ that satisfy $x_1 x_2 + x_3 + 2x_4 = 2$ and the origin.
- 3. Find an orthogonal basis for the subspace of \mathbb{R}^4 spanned by $\vec{u}_1 = (1, 1, 0, 0)$ and $\vec{u}_2 = (0, 1, 1, 0)$
- 4. Find a vector in \mathbb{R}^4 that is orthogonal to the subapace spanned by $\vec{u}_1 = (1, 1, 0, 0)$ and $\vec{u}_2 = (0, 1, 1, 0)$.
- 5. Find an orthogonal basis for the subspace of \mathbb{R}^4 spanned by $\vec{u}_1 = (1, 1, 0, 0), \ \vec{u}_2 = (0, 1, 1, 0), \ \text{and} \ \vec{u}_3 = (0, 0, 1, 1).$

- 6. Find an orthonormal basis for the subapace of \mathbb{R}^4 determined by $x_1 x_2 + x_3 2x_4 = 0$.
- 7. Find a vector that is orthogonal to the above subspace.

[Last revised: May 5, 2013]