Kernel of $L u:=u^{\prime \prime}+4 u$
Let $L u:=u^{\prime \prime}+4 u$. This differential equation describes the motion of a mass on a spring. These notes complete the proof in class concerning the kernel of L. The (standard) procedure we will use is outlined in our text, Section $4.1 \# 58$.
Theorem The most general solution of $u^{\prime \prime}+4 u=0$ is $u(t)=a \cos 2 t+b \sin 2 t$ for any constants a and b. Thus the dimension of the kernel of L is two.
Note that is is simple to verify that $u(t)=a \cos 2 t+b \sin 2 t$ is in the kernel of L. We want to show that everything in the kernel of L has this form.
The key step is the
Lemma If $w^{\prime \prime}+4 w=0$ with both $w(0)=0$ and $w^{\prime}(0)=0$, then $w(t)=0$ for all t.
Proof: Introduce the function $E(t):=\frac{1}{2}\left[w^{\prime 2}+4 w^{2}\right]$ (this function $E(t)$ is motivated by the sum of kinetic and potential energy of the vibrating spring). Then differentiating $E(t)$ and using the differential equation

$$
\frac{d E}{d t}=w^{\prime} w^{\prime \prime}+4 w w^{\prime}=w^{\prime}\left(w^{\prime \prime}+4 w\right)=0 .
$$

Thus the derivative of E is zero so $E(t)=$ constant. But from the initial conditions $w(0)=0$ and $w^{\prime}(0)=0$ we see that $E(0)=0$. Thus $E(t)=0$ for all t. Because $E(t)$ is a sum of squares, this implies that $w(t)=0$ for all t, just as claimed.

Proof of the theorem: Let $v(t)$ be any solution of the differential equation. We want to find constants a and b so that $v(t)=a \cos 2 t+b \sin 2 t$. Letting $t=0$ in this we see that $a=v(0)$. Then taking the derivative and setting $t=0$ we find $b=\frac{1}{2} v^{\prime}(0)$.
Using this let $w(t)=v(t)-\left[v(0) \cos 2 t+\frac{1}{2} v^{\prime}(0) \sin 2 t\right]$. Then $w^{\prime \prime}+4 w=0$ and also $w(0)=0$ and $w^{\prime}(0)=0$. Therefore, by the Lemma, $w(t)=0$ for all t, that is, this solution $v(t)$ does have the form $v(t)=a \cos 2 t+b \sin 2 t$.

Application: Similarily one can show that the only solutions of $u^{\prime \prime}+u=0$ are $u(x)=$ $a \cos x+b \sin x$ for any constants a and b. We will apply this to prove the standard trigonometric identity

$$
\cos (x+c)=\cos x \cos c-\sin x \sin c
$$

Let $v(x):=\cos (x+c)$. Then v satisfies $v^{\prime \prime}+v=0$ so by the above result $v(x)=$ $a \cos x+b \sin x$ where $a=v(0)=\cos c$ and $b=v^{\prime}(0)=-\sin c$. Thus,

$$
\cos (x+c)=\cos c \cos x-\sin c \sin x
$$

as claimed. Similarly $\sin (x+c)=\sin x \cos c+\cos x \sin c$.
[Last revised: February 5, 2013]

