ODE-Coupled

As a mapping, the matrix $A:=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ is an orthogonal reflection across the line $x_{1}=x_{2}$. The eigenvectors V have the property that $A \vec{v}=\lambda \vec{v}$ for some constant λ. On geometric grounds, under this reflection the points on this line $x_{1}=x_{2}$ are fixed whilethe points on the line $x_{2}=-x_{1}$ are reflected. In particular

$$
A:\binom{1}{1} \rightarrow\binom{1}{1} \quad \text { and } \quad A:\binom{1}{-1} \rightarrow\binom{-1}{1}=-\binom{1}{-1} .
$$

If we let $\vec{v}_{1}:=\binom{1}{1}$ and $\vec{v}_{2}:=\binom{1}{-1}$, then $A \vec{v}_{1}=\vec{v}_{1}$ and $A \vec{v}_{2}=\vec{v}_{2}$, so \vec{v}_{1} and \vec{v}_{2} are eigenvectors of A with corresponding eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=-1$. These vectors form a basis of \mathbb{R}^{2} that is particularly useful to use for problems involving this matrix A.

To illustrate, we solve the differential equations

$$
\begin{align*}
& \frac{d x_{1}}{d t}=x_{2} \tag{1}\\
& \frac{d x_{2}}{d t}=x_{1}
\end{align*} \quad \text { that is, } \quad \frac{d \vec{x}}{d t}=A \vec{x}
$$

with initial conditions $x_{1}(0)=4$ and $x_{2}(0)=0$. In the above, $\vec{x}(t):=$ $\binom{x_{1}(t)}{x_{2}(t)}$. These equations are coupled since they both involve $x_{1}(t)$ and $x_{2}(t)$.

Method 1 We use the eigenvectors of A as our new basis

$$
\begin{equation*}
\vec{x}(t)=u_{1}(t) \vec{v}_{1}+u_{2}(t) \vec{v}_{2}, \tag{2}
\end{equation*}
$$

where the coefficients $u_{1}(t)$ and $u_{2}(t)$ are to be found. Substitute this into both sinde of equation (1). Since neither \vec{v}_{1} nor \vec{v}_{2} depend on t we find:

$$
\frac{d \vec{x}(t)}{d t}=\frac{d u_{1}(t)}{d t} \vec{v}_{1}+\frac{d u_{2}(t)}{d t} \vec{v}_{2} .
$$

Also, since the \vec{v}_{j} are eigenvectors of A :

$$
A \vec{x}=u_{1}(t) A \vec{v}_{1}+u_{2}(t) A \vec{v}_{2}=u_{1}(t) \vec{v}_{1}-u_{2}(t) \vec{v}_{2} .
$$

Thus, from equation (1)

$$
0=\frac{d \vec{x}(t)}{d t}-A \vec{x}(t)=\left[\frac{d u_{1}(t)}{d t}-u_{1}(t)\right] \vec{v}_{1}+\left[\frac{d u_{2}(t)}{d t}+u_{2}(t)\right] \vec{v}_{2} .
$$

Because \vec{v}_{1} and \vec{v}_{2} are linearly independent, their coefficients must both be zero:

$$
\begin{align*}
\frac{d u_{1}(t)}{d t} & =u_{1}(t) \tag{3}\\
\frac{d u_{2}(t)}{d t} & =-u_{2}(t) .
\end{align*}
$$

Note these equations are uncoupled - and are easy to solve:

$$
u_{1}(t)=c_{1} e^{t} \quad \text { and } \quad u_{2}(t)=c_{2} e^{-t}
$$

where c_{1} and c_{2} are any constants. Shortly they will be determined by the initial conditions.
Substituting this into equation (2), we find that

$$
\vec{x}(t)=c_{1} e^{t}\binom{1}{1}+c_{2} e^{-t}\binom{1}{-1}=\binom{c_{1} e^{t}+c_{2} e^{-t}}{c_{1} e^{t}-c_{2} e^{-t}} .
$$

Now we use the initial condition to find the constants c_{1} ans c_{2} :

$$
\binom{4}{0}=\vec{x}(0)=\binom{c_{1}+c_{2}}{c_{1}-c_{2}} .
$$

Therefore $c_{1}=c_{2}=2$ so the desired solution is

$$
\vec{x}(t)=\binom{2 e^{t}+2 e^{-t}}{2 e^{t}-2 e^{-t}},
$$

that is,

$$
x_{1}(t)=2 e^{t}+2 e^{-t}, \quad x_{2}(t)=2 e^{t}-2 e^{-t} .
$$

METHOD 2 This is essentially identical, but here we explicitly introduce the change of coordinates S from the standard basis to the new basis consisting of the eigenvectors of A. We want $S^{-1} A S=D$ where D is the diagonal matrix consisting of the eigenvalues of A, so

$$
D=\left(\begin{array}{rr}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Computational Note if $S=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $D=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$, then

$$
S D=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)=\left(\begin{array}{ll}
\lambda_{1} a & \lambda_{2} b \\
\lambda_{1} c & \lambda_{2} d
\end{array}\right)
$$

so the columns of S are multiplied by the λ_{j} 's ($D S$ multiplies the rows of S by the λ_{j} 's).
By general theory, the columns S are the corresponding eigenvectors of A

$$
S=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Since $A=S D S^{-1}$, we substitute this into equation (1)

$$
\frac{d \vec{x}}{d t}=A \vec{x}=S D S^{-1} \vec{x}, \quad \text { that is, } \quad \frac{d\left(S^{-1} \vec{x}\right)}{d t}=D S^{-1} \vec{x}
$$

and are let to make the change of variable $\vec{u}=S^{-1} \vec{x}$ to find

$$
\frac{d \vec{u}}{d t}=D \vec{u}, \quad \text { that is, } \quad \frac{d u_{1}}{d t}=u_{1} .
$$

These are exactly the equations (3) we found above. Thus

$$
\vec{u}(t)=\binom{c_{1} e^{t}}{c_{2} e^{-t}},
$$

so, just as before,

$$
\vec{x}(t)=S \vec{u}(t)=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)\binom{c_{1} e^{t}}{c_{2} e^{-t}}=\binom{c_{1} e^{t}+c_{2} e^{-t}}{c_{1} e^{t}-c_{2} e^{-t}} .
$$

Again, we can use the initial condition to find the constants c_{1} and c_{2}.
EXERCISE: Say you have a sequence of vectors $\vec{x}_{1}, \vec{x}_{2}, \ldots$ with the property that $\vec{x}_{k+1}=A \vec{x}_{k}$, where A is the above 2×2 matrix, and say the initial vector $X_{0}=\binom{3}{2}$. Compute \vec{x}_{k} by using a basis consisting of the eigenvectors of $A: x_{k}=a_{k} \vec{v}_{1}+b_{k} \vec{v}_{2}$.
Since our map A is just an orthogonal reflection, without any computation (or mention of eigenvectors) the answer is obviously that if k is even, then $\vec{x}_{k}=\vec{x}_{0}$ while if k is odd, then $\vec{x}_{k}=\vec{x}_{1}$ is the reflected vector. The point of this problem is that the identical computation works in the general case where A is any $n \times n$ matrix that can be diagonalized.

