
Math 312 Jerry L. Kazdan

Multiple Integral: Change of Variable

Say we have a multiple integral

K :=
ZZ

R2

1
[1+(x+2y−1)2+(3x+ y+2)2]2

dxdy (1)

and would like to make the change of variable

u = x+2y−1, v = 3x+ y++2 (2)

since that would clean-up the integrand. How is this done?

Here is the general rule for

J :=
ZZ

D

h(v1,v2)dv1dv2

under the change of variable~v = F(~u) whereF(~u) =

(

f1(~u)
f2(~u)

)

is given by

v1 = f1(u1, u2) v2 = f2(u1, u2).

Note that here we have defined the old variables,(v1, v2) in terms of the new
variables,(u1, u2), while in equations (1)-(2) we defined the new variables,
(u, v) in terms of the old ones,(x, y). In practice, one uses whichever is
more convenient.
To begin, compute the first derivative (orJacobian) matrix:

F ′(~u) :=

(∂ f1(u1,u2)
∂u1

∂ f1(u1,u2)
∂u2

∂ f2(u1,u2)
∂u1

∂ f2(u1,u2)
∂u1

)

. (3)

Then the rule is
dv1dv2 = |detF ′(~u)|du1du2

so in the new variables

J =
ZZ

D ′
h( f1(u1,u2), f2(u1,u2)) |det(F ′(~u)|du1du2,
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whereD ′ is the region in theu1u2 plane corresponding toD .

Example 1 Compute
ZZ

R2

1
(1+ x2+ y2)2 dxdy.

We change to polar coordinates

(

x
y

)

= F(r, θ) with the usual formulas

x = r cosθ y = r sinθ.

Then, as in equation (3), the first derivative matrix is

F ′(r, θ) =

(

∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)

=

(

cosθ −r sinθ
sinθ r cosθ

)

.

Since detF ′(r, θ) = r we have dxdy = r dr dθ so
ZZ

R2

1
(1+ x2+ y2)2 dxdy =

Z 2π

0

(

Z ∞

0

1
(1+ r2)2 r dr

)

dθ

=2π
Z ∞

0

1
(1+ r2)2 r dr = π

(4)

Example 2 For the integral in equation (1)-(2) if we write

(

u
v

)

= G(x,y)

then the first derivative matrix is

G′(x,y) =

(

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)

=

(

1 2
3 1

)

so dudv = 5dxdy.

Therefore, using polar coordinates, from equation (4)

K =
ZZ

R2

1
[1+(x+2y−1)2+(3x+ y+2)2]2

dxdy

=
ZZ

R2

1
(1+u2+ v2)2

dudv
5

=
π
5

(5)

The identical procedure works in in higher dimensions. InR
n say we have

a multiple integral

J :=
Z

· · ·
Z

D

h(v1, . . . ,vn)dv1 · · ·dvn
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and want to make the change of variable~v = F(~u). As above, compute the
first derivative matrix

F ′(~u) =









∂ f1(~u)
∂u1

· · · ∂ f1(~u)
∂un... .. . ...

∂ fn(~u)
∂u1

· · · ∂ fn(~u)
∂un









.

Then the element of “volume” becomes

dv1 · · ·dvn = |detF ′(~u)|du1 · · ·dun.

This is particularly simple if one makes alinear change of variable,~v = A~u
whereA is an invertible matrix whose elements are constants, soF(~u) = A~u.
ThenF ′(~u) = A and we obtain

dv1 · · ·dvn = |detA|du1 · · ·dun (6)

and the change of variable formula is simply

J :=
Z

· · ·
Z

D

h(~v)dv1 · · ·dvn =
Z

· · ·
Z

D ′
h(A~u) |detA|du1 · · ·dun.

Example 3 Compute J =
ZZ

R2

1

(1+2x2
1+6x1x2+9x2

2)
2

dx1dx2.

SOLUTION Write 2x2
1 + 6x1x2 + 9x2

2 = 〈x, Ax〉, where A = (2 3
3 9). Idea:

If A were the identity matrix, this would be straightforward, just use polar
coordinates as in equation (4). DiagonalizingA is thus the essential step.
SinceA is symmetric, it is orthogonally similar to a diagonal matrix,A =
RDR∗ , whereD = (λ1 0

0 λ2
) has the eigenvalues ofA on its diagonal andR is

an orthogonal matrix.

〈x, Ax〉 = 〈x, RDR∗x〉 = 〈R∗x, DR∗x〉.

Make the change of variabley = R∗x. In the integral, since|detR| = 1,
then, by (6),

dy1dy2 = |detR∗|dx1dx2 = dx1dx2
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we find

J =
ZZ

R2

1

(1+λ1y2
1+λ2y2

2)
2

dy1dy2.

BecauseA is positive definite (there is a simple test for 2× 2 matrices),
its eigenvalues are positive so we make the further change of variablez j =√

λ jy j . This gives
λ1y2

1+λ2y2
2 = z2

1+ z2
2.

and
dz1dz2 =

√

λ1λ2dy1dy2 =
√

detA dy1dy2 = 3dy1dy2.

Thus, as in equation (4),

J =
1
3

ZZ

R2

1

(1+ z2
1+ z2

2)
2

dz1dz2 =
π
3
.

It is interesting that although we used the theory that we could orthogonally
diagonalizeA, we never needed to compute explicitly its eigenvalues or
eigenvectors.

ALTERNATE For this and other examples where〈x, Ax〉 with A positive
definite arise, it is often faster (and clearer) to use thatA has a positive
definite square root, that is, there is a positive dedinite (symmetric) matrix
B with A = B2. Then

〈x, Ax〉 = 〈x, B2x〉 = 〈Bx, Bx〉 = ‖Bx‖2,

which suggests making the change of variablesy = Bx to find

〈x, Ax〉 = ‖y‖2.

If we use this approach in the above integral, then

dy1dy2 = |detB |dx1dx2 =
√

|detA | dx1dx2

so

J =
1

√

|detA |

ZZ

R2

1
(1+‖y‖2)2 dy1dy2.
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As before, we now use polar coordinates (equation (4)) to conclude

J =
1
3

Z 2π

0

(

Z ∞

0

1
(1+ r2)2 r dr

)

dθ =
π
3
.
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