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The Eigenvalues and Eigenfunctions of Lu := −u
′′

Let Lu := −u′′ where u(x) is in the space C2

0
[a, b] of twice continuously differentiable

real-valued functions on the interval a ≤ x ≤ b with the boundary conditions u(a) = 0 and
u(b) = 0 (the subscript 0 in C2

0
[a, b] is to remind us of these boundary conditions). This

differential operator, L = −D2 , with these boundary conditions, arises in many applica-
tions. We inserted the minus sign in the definition Lu := −u′′ since this way it will turn
out (see below) that the eigenvalues of L are positive.

Example. The oscilations w(x, t) of a guitar string on the interval a ≤ x ≤ b and time
t ≥ 0. Then w satisfies the wave equation

∂2w(x, t)

∂t2
= c2

∂2w(x, t)

∂x2
, (1)

where c is a constant depending on the density and tension of the string. Since the ends of
the guitar string are fixed, w satisfies the boundary conditions w(a, t) = w(b, t) = 0.
Oscilations of the special form w(x, t) = u(x)φ(t) are called standing waves. Plugging this
into (1), we get

u(x)φ̈(t) = c2u′′(x)φ(t).

Now we separate the variables, putting the functions of t on one side and the functions of
x on the other, giving

φ̈(t)

c2φ(t)
=

u′′(x)

u(x)
.

Because the left side does not depend on x and the right side on t , both sides are some
constant −λ ; we added the minus sign since this way it will turn out (see below) that
λ > 0. Consequently

−u′′(x) = λu(x) and − φ̈(t) = c2λφ(t).

Also, the boundary conditions on w(x, t) imply that u(a) = 0 and u(b) = 0. Thus, u(x)
is an eigenfunction of Lu := −u′′ and λ the corresponding eigenvalue. It is the differential
equation for u(x) along with the boundary condition that will determine the eigenvalues
λ . Only then does one solve the (simple) differential equation for φ(t).

We will use the inner product

〈u, v〉 =

∫
b

a

u(x)v(x) dx.

Compute the Adjoint L∗ of L.

By definition, the adjoint, L∗ has the property 〈Lu, v〉 = 〈u, L∗v〉 for all functions u , v in
C2

0
[a, b] , that is, ∫

b

a

−u′′(x)v(x) dx =

∫
b

a

u(x)L∗v(x) dx,
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so we want to get the derivatives off of u on the left-hand side. Integrating by parts twice

does the job. Moreover, because of the boundary conditions on u and v , the boundary
terms when integrating by parts are zero. This gives:

∫
b

a

u′′(x)v(x) dx =

∫
b

a

u(x)[−v(x)′′] dx,

Comparing the last two equations, we find that L∗v = −v′′ , so in this case, L∗ = L so
L – with these boundary conditions – is self-adjoint. Thus we know immediately that its
eigenvalues λ are real numbers.

Find the Eigenvalues and Eigenfunctions of L .
With hindsight, for simplicity we will use the interval 0 ≤ x ≤ π . We want to solve
Lu = λu , that is, −u′′ = λu , where u also satisfies the boundary conditions. The trivial
solution u(x) ≡ 0 is never considered to be an eigenfunction.
First we claim that λ > 0 (we already know that λ is real). Since L with our boundary
conditions is self-adjoint, this immediately tells us that all its eigenvalues are real. There
are several ways to see thtat the eigenvalues are positive. One way is to try the cases
λ < 0, λ = 0, and λ > 0 separately. However the following approach works in many more
problems: Take the inner product of both sided of −u′′ = λu with u , so 〈Lu, u〉 = λ〈u, u〉 ,
that is, ∫

π

0

−u′′(x)u(x) dx = λ

∫
π

0

u2 dx (2)

and integrate the left-hand side by parts. Because of the boundary conditions, the boundary
terms in the integration by parts are zero. This gives

〈Lu, u〉 =

∫
π

0

−u′′(x)u(x) dx =

∫
π

0

u′(x)u′(x) dx.

Using this in the left-hand side of (2) we find that

∫
π

0

u′2 dx = λ

∫
π

0

u2 dx. (3)

If λ = 0 in (3), this implies that u′(x) ≡ 0. Thus u(x) ≡constant. Because u(0) = 0, this
constant is zero so in this case u is not an eigenfunction. Because u(x) 6≡ 0, this gives the
useful formula

λ =

∫
π

0
u′2 dx∫

π

0
u2 dx

> 0.

so λ > 0 and we will write λ = k2 > 0

Then the equation Lu = λu is u′′ + k2u = 0 whose general solution is u(x) = A cos kx +
B sin kx . Now we use the boundary conditions. The condition u(0) = 0 shows that A = 0
while the condition u(π) = 0 means 0 = B sin kπ . If we let B = 0, then u(x) ≡ 0,
which is not allowed. Thus we need sin kπ = 0. This is only satisfied if k is an integer,
k = 1, 2, 3, . . . .
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Summary The eigenfunctions of Lu := −u′′ are uk(x) = sin kx , k = 1, 2, 3, . . . with
c0rresponding eigenvalues λ = k2 . Since the uk are eigenfunctions of a self-adjoint operator
with distinct eigenvalues, by general theory, they are automatically orthogonal in this inner
product.
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