The Eigenvalues and Eigenfunctions of $L u:=-u^{\prime \prime}$

Let $L u:=-u^{\prime \prime}$ where $u(x)$ is in the space $C_{0}^{2}[a, b]$ of twice continuously differentiable real-valued functions on the interval $a \leq x \leq b$ with the boundary conditions $u(a)=0$ and $u(b)=0$ (the subscript 0 in $C_{0}^{2}[a, b]$ is to remind us of these boundary conditions). This differential operator, $L=-D^{2}$, with these boundary conditions, arises in many applications. We inserted the minus sign in the definition $L u:=-u^{\prime \prime}$ since this way it will turn out (see below) that the eigenvalues of L are positive.
Example. The oscilations $w(x, t)$ of a guitar string on the interval $a \leq x \leq b$ and time $t \geq 0$. Then w satisfies the wave equation

$$
\begin{equation*}
\frac{\partial^{2} w(x, t)}{\partial t^{2}}=c^{2} \frac{\partial^{2} w(x, t)}{\partial x^{2}} \tag{1}
\end{equation*}
$$

where c is a constant depending on the density and tension of the string. Since the ends of the guitar string are fixed, w satisfies the boundary conditions $w(a, t)=w(b, t)=0$.
Oscilations of the special form $w(x, t)=u(x) \phi(t)$ are called standing waves. Plugging this into (1), we get

$$
u(x) \ddot{\phi}(t)=c^{2} u^{\prime \prime}(x) \phi(t) .
$$

Now we separate the variables, putting the functions of t on one side and the functions of x on the other, giving

$$
\frac{\ddot{\phi}(t)}{c^{2} \phi(t)}=\frac{u^{\prime \prime}(x)}{u(x)} .
$$

Because the left side does not depend on x and the right side on t, both sides are some constant $-\lambda$; we added the minus sign since this way it will turn out (see below) that $\lambda>0$. Consequently

$$
-u^{\prime \prime}(x)=\lambda u(x) \quad \text { and } \quad-\ddot{\phi}(t)=c^{2} \lambda \phi(t) .
$$

Also, the boundary conditions on $w(x, t)$ imply that $u(a)=0$ and $u(b)=0$. Thus, $u(x)$ is an eigenfunction of $L u:=-u^{\prime \prime}$ and λ the corresponding eigenvalue. It is the differential equation for $u(x)$ along with the boundary condition that will determine the eigenvalues λ. Only then does one solve the (simple) differential equation for $\phi(t)$.
We will use the inner product

$$
\langle u, v\rangle=\int_{a}^{b} u(x) v(x) d x
$$

Compute the Adjoint L^{*} of L.

By definition, the adjoint, L^{*} has the property $\langle L u, v\rangle=\left\langle u, L^{*} v\right\rangle$ for all functions u, v in $C_{0}^{2}[a, b]$, that is,

$$
\int_{a}^{b}-u^{\prime \prime}(x) v(x) d x=\int_{a}^{b} u(x) L^{*} v(x) d x
$$

so we want to get the derivatives off of u on the left-hand side. Integrating by parts twice does the job. Moreover, because of the boundary conditions on u and v, the boundary terms when integrating by parts are zero. This gives:

$$
\int_{a}^{b} u^{\prime \prime}(x) v(x) d x=\int_{a}^{b} u(x)\left[-v(x)^{\prime \prime}\right] d x,
$$

Comparing the last two equations, we find that $L^{*} v=-v^{\prime \prime}$, so in this case, $L^{*}=L$ so L - with these boundary conditions - is self-adjoint. Thus we know immediately that its eigenvalues λ are real numbers.

Find the Eigenvalues and Eigenfunctions of L.

With hindsight, for simplicity we will use the interval $0 \leq x \leq \pi$. We want to solve $L u=\lambda u$, that is, $-u^{\prime \prime}=\lambda u$, where u also satisfies the boundary conditions. The trivial solution $u(x) \equiv 0$ is never considered to be an eigenfunction.
First we claim that $\lambda>0$ (we already know that λ is real). Since L with our boundary conditions is self-adjoint, this immediately tells us that all its eigenvalues are real. There are several ways to see thtat the eigenvalues are positive. One way is to try the cases $\lambda<0, \lambda=0$, and $\lambda>0$ separately. However the following approach works in many more problems: Take the inner product of both sided of $-u^{\prime \prime}=\lambda u$ with u, so $\langle L u, u\rangle=\lambda\langle u, u\rangle$, that is,

$$
\begin{equation*}
\int_{0}^{\pi}-u^{\prime \prime}(x) u(x) d x=\lambda \int_{0}^{\pi} u^{2} d x \tag{2}
\end{equation*}
$$

and integrate the left-hand side by parts. Because of the boundary conditions, the boundary terms in the integration by parts are zero. This gives

$$
\langle L u, u\rangle=\int_{0}^{\pi}-u^{\prime \prime}(x) u(x) d x=\int_{0}^{\pi} u^{\prime}(x) u^{\prime}(x) d x .
$$

Using this in the left-hand side of (2) we find that

$$
\begin{equation*}
\int_{0}^{\pi} u^{\prime 2} d x=\lambda \int_{0}^{\pi} u^{2} d x \tag{3}
\end{equation*}
$$

If $\lambda=0$ in (3), this implies that $u^{\prime}(x) \equiv 0$. Thus $u(x) \equiv$ constant. Because $u(0)=0$, this constant is zero so in this case u is not an eigenfunction. Because $u(x) \not \equiv 0$, this gives the useful formula

$$
\lambda=\frac{\int_{0}^{\pi} u^{\prime 2} d x}{\int_{0}^{\pi} u^{2} d x}>0
$$

so $\lambda>0$ and we will write $\lambda=k^{2}>0$
Then the equation $L u=\lambda u$ is $u^{\prime \prime}+k^{2} u=0$ whose general solution is $u(x)=A \cos k x+$ $B \sin k x$. Now we use the boundary conditions. The condition $u(0)=0$ shows that $A=0$ while the condition $u(\pi)=0$ means $0=B \sin k \pi$. If we let $B=0$, then $u(x) \equiv 0$, which is not allowed. Thus we need $\sin k \pi=0$. This is only satisfied if k is an integer, $k=1,2,3, \ldots$.

Summary The eigenfunctions of $L u:=-u^{\prime \prime}$ are $u_{k}(x)=\sin k x, k=1,2,3, \ldots$ with c0rresponding eigenvalues $\lambda=k^{2}$. Since the u_{k} are eigenfunctions of a self-adjoint operator with distinct eigenvalues, by general theory, they are automatically orthogonal in this inner product.
[Last revised: May 5, 2013]

