
Math 312 Final Exam Jerry L. Kazdan
May 1, 2013 12:00 – 2:00

Directions This exam has two parts. Part A has shorter 5 questions, (8 points each so total 40
points) while Part B has 6 problems (15 points each, so total is 90 points). Maximum score is thus
130 points.
Closed book, no calculators or computers– but you may use one 3′′ × 5′′ card with notes on both
sides. Clarity and neatness count.

Part A: Five short answer questions (8 points each, so 40 points).

A–1. Suppose T : R
6 → R

4 is a linear transformation represented by a matrix, A .

a) What possible values could the rank of A be? Why?

Solution: 0 ≤ rank (A) ≤ 4. For instance, if A is the zero matrix, its rank is 0.

b) What possible values could the dimension of the kernel of A be? Why?

Solution: 2 ≤ dim ker(A) ≤ 6. For instance, if A is the zero matrix, the dimension of
its kernel is 6. By the rank-nullity theorem, the dimension of its kernel is at least 2.

c) Suppose the rank of A is as large as possible. What is the dimension of ker(A)⊥? Explain.

Solution: If rank(A) = 4, then as above, dimker(A) = 2 so the dimension of its orthog-
onal complement is 4.

A–2. Let ~v be an eigenvector of an invertible matrix A . Which of the following are necessarily
true? Please give your reasoning.

I. ~v is an eigenvector of A−1 . II. ~v is an eigenvector of A2 . III. ~v is an eigenvector of A+I .

Solution: All of these are TRUE.

I. If A~v = λ~v , then ~v = λA−1~v so A−1~v = (1/λ)~v . [Since A is invertible, then λ = 0 cannot
be an eigenvalue].

II. A2~v = A(A~v) = A(λ~v) = λ2~v .

More generally, for any integer k (positive, negative, or zero) Ak~v = λk~v .

III. (A + I)~v = λ~v + ~v = (λ + 1)~v .

A–3. True or false? If false, give a reason.

a) If {~v1, ~v2, ~v3} is a collection of non-zero vectors in R
5 , then the span of {~v1, ~v2, ~v3} must

be a three-dimensional subspace of R
5 .

Solution: FALSE. The span of {~v1, ~v2, ~v3} is a subspace of dimension at most 3, but if
the ~vj are linearly dependent, its dimension could be 1 or 2 (but not 0).

b) The set of polynomials in P4 satisfying p(0) = 2 is a subspace of P4 .

Solution: FALSE. It is not a subspace because it does not contain the 0 polynomial.
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c) If ~x is a least-squares solution to A~x = ~b then A~x is orthogonal to the image of A .

Solution: FALSE. A~x is in the image of A . It could be orthogonal to the image of A
only in the special unlikely case where A~x = 0.

d) If ~v1, ~v2, ~v3 are orthonormal vectors in R
3 , then these vectors are linearly independent.

Solution: TRUE. Any orthogonal non-zero vectors are linearly independent since if

a~v1 + b~v2 + c~v3 = 0,

then taking the inner product of this with ~v1 we find that a〈~v1, ~v1〉 = 0. Thus a = 0.
Similarly b = 0 and c = 0.

e) If the matrix A is both invertible and diagonalizable, then A−1 is diagonalizable.

Solution: TRUE. If A diagonalizable, then A = SDS−1 , where D is a diagonal matrix.
Now take the inverse of both sides.

A–4. Consider the matrix A =

[

2 −1
2 2

]

. If ~x ∈ R
2 is a unit vector, what is the largest that

‖A~x‖ could possibly be?

Solution: The key fact is that if M is a self-adjoint n×n with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn

(necessarily real) then for any ~x we have

λ1‖~x‖2 ≤ 〈~x, M~x〉 ≤ λn‖~x‖2.

Since
‖A~x‖2 = 〈A~x, A~x〉 = 〈~x, A∗A~x〉,

the matrix M := A∗A is self adjoint and positive semi-definite, the above expression is largest
if ~x is an eigenvector of A∗A corresponding to its largest eigenvalue, λmax . Thus

‖A~x‖2 ≤ λmax‖~x‖2.

Because the problem specifies that ~x is a unit vector, then

‖A~x‖2 ≤ λmax.

We now compute λmax . The computation is routine. Note that we use the matrix M = A∗A ,
not A .

A∗A =

(

2 2
−2 2

)(

2 2
−2 2

)

=

(

8 2
2 5

)

.

Then the characteristic polynomial is

det(A∗A − λI) = λ2 − 13λ + 36 = (λ − 9)(λ − 4).

Consequently λmax = 9 so ‖A~x‖ ≤ 3.
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A–5. Let A be an m×n matrix, and suppose ~v and ~w are orthogonal eigenvectors of AT A . Show
that A~v and A~w are orthogonal.

Solution: Say AT A~w = λ~w . Then

〈A~v, A~w〉 = 〈~v, AT A~w〉 = 〈~v, λ~w〉 = λ〈~v, ~w〉.
But ~v and ~w are given to be orthogonal so the result follows. Note that in this we never
needed to use that ~v is also an eigenvector of AT A

Part B Six questions, 15 points each (so 90 points total).

B–1. Find an orthogonal matrix R that diagonalizes A :=





1 −1 0
−1 1 0

0 0 2





Solution: The characteristic polynomial is

det(A − λI) = (2 − λ) det

(

1 − λ −1
−1 1 − λ

)

= (2 − λ)[(1 − λ)2 − 1] = −λ(λ − 2)2.

Thus the eigenvalues are λ1 = 0, λ2 = λ3 = 2 For λ1 we find ~v1 =





1
1
0





For λ2 = λ3 = 2 we want the kernel of the matrix

A − 2I =





−1 −1 0
= 1 −1 0

0 0 0



 .

It is easy to see that this kernel consists of all vectors of the form





a
−a

c



 . One simple orthogonal

basis is ~v2 =





1
−1

0



 and ~v3 =





0
0
1



 . The orthogonal matrix R that diagonalizes A has

orthonormal eigenvectors as its columns. The orthogonal eigenvectors ~v1 , ~v2 , and ~v3 do the
job simply by making them into unit vectors. Thus

R =





1/
√

2 1/
√

2 0

1/
√

2 −1/
√

2 0
0 0 1





B–2. Let V be the vector space spanned by the two functions ex and e−x , considered only on the
interval [−1, 1]. Give V the L2 inner product:

〈f, g〉 =

∫

1

−1

f(x)g(x) dx.
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a) Prove that B = {ex + e−x, ex − e−x} forms an orthogonal basis of V .

Solution Write E1(x) := ex + e−x and E2(x) := ex − e−x . Note that E1 is an even
function and E2 is an odd function. In this inner product, an even function and an odd
function are always orthogonal.

To show they are a basis, we need to show they are both linearly independent and span.
One way to see that they are linearly independent is to use that they are orthogonal (see
Problem A-3d above). There are many other approaches.

They span V since

ex =
E1 + E2

2
and e−x =

E1 − E2

2
.

Thus any linear combination of ex and e−x can also be written as a linear combination of
E1 and E2 .

b) Find the best approximation in V (with respect to the L2 inner product) of the func-
tion g(x) = x . [Hint: think orthogonal projection. Leave your answer in terms of

integrals that could be evaluated easily using a computer program.]

Solution: To find the best approximation of g(x) = x in V , we use E1 and E2 as an
orthogonal basis for V and want to write

x = aE1 + bE2 + h(x), (1)

where a and b are constants and h(x) is orthogonal to both E1 and E2 . Then aE1 + bE2

is the orthogonal projection of x into V and is the desired best approximation of x in V :

ProjV (x) = aE1(x) + bE2(x).

Our task is to find a and b . To compute a take the inner product of both sides of equation
(1) with E1 and use that E1 is orthogonal to both E2 and h . Thus

〈x, E1〉 = a‖E1‖2 so a =
〈x, E1〉
‖E1‖2

.

Similarly

〈x, E2〉 = b‖E2‖2 so b =
〈x, E2〉
‖E2‖2

.

These formulas for a and b just involve the inner product and hence straightforward but
tedious integrals. [One can save time by observing that a = 0 because the numerator is the
inner product of an odd and an even function. ]

B–3. In a large city, a car rental company has three locations: the Airport, the City, and the
Suburbs. One has data on which location the cars are returned daily:

• Rented at Airport: 2% are returned to the City and 25% to the Suburbs. The rest
are returned to the Airport.
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• Rented in City : 10% returned to Airport, 10% returned to Suburbs. The rest are
returned to the City.

• Rented in Suburbs: 25% are returned to the Airport and 2% to the city. The rest are
returned to the Suburbs.

If initially there are 35 cars at the Airport, 150 in the city, and 35 in the suburbs, what is the
long-term distribution of the cars?

Solution: Let Ak , Ck , and Sk denote the number of cars at the Airport, City, and Suburbs,
respectively, on day k . The above data tells us that on day k + 1

Ak+1 =.73Ak + .10Ck + .25Sk

Ck+1 =.02Ak + .80Ck + .02Sk

Sk+1 =.25Ak + .10Ck + .73Sk

and write Dk =





Ak

Ck

Sk



 so D0 =





35
150
35



 .

The vector Dk gives the distribution of the cars on day k . Note for every day the sum of the
components of Dk is always 220 since the same cars just get moved around. The transition
matrix for this Markov chain is

T :=





.73 .10 .25

.02 .80 .02

.25 .10 .73





The long-term distribution is D := limk→∞ Dk . From the theory, D = TD so D is an
eigenvector of T associated with the eigenvalue 1. Thus we solve the equations (T − I)D = 0.

First we seek an eigenvector ~v of T~v = ~v with no special normalization. This gives ~v =





5
1
5



 .

Since the sum of the components of ~v is 11 and to find D the sum of the components should

be 220, then D = 220

11
~v = 20~v =





100
20
100



 . It is often useful to compute the corresponding

probability vector P the sum of whose components add to 1. Then P = 1

11
~v .

B–4. Say ~x(t) is a solution of
d~x

dt
= A~x , where A :=

(

c 5
5 c

)

. For which value(s) of the real

constant c does every solution ~x(t) tends to zero as t → ∞?

Solution: Since A is a symmetric matrix, it can be diagonalized (or one can compute that
the eigenvalues are c + 5 and c − 5, which are distinct, hence the matrix is diagonalizable).
Let λ1 and λ2 be the eigenvalues with corresponding eigenvectors ~v1 and ~v2 . Then by using
~v1 and ~v2 as a basis for the plane, the general solution ~x(t) of ~x′ = A~x is

~x(t) = c1e
λ1t~v1 + c2e

λ2t~v2, (2)

where the coefficients c1 and c2 can be determined by the initial conditions. Since we want
all solution to tend to 0 as t → ∞ , we need to know more about the eigenvalues. By a simple
computation, they are λ1 = c + 5 and λ2 = c− 5. From the formula (2)we need both c + 5 < 0
and c − 5 < 0. Thus the restriction on c is c < −5.
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B–5. Of the following three matrices, which (if any) can be orthogonally diagonalized; which can
be diagonalized (but not orthogonally); and which cannot be diagonalized at all. Identify these
fully explaining your reasoning.

A =





0 2 3
2 0 2
3 2 0



 , B =





0 −3 1
0 0 2
0 0 0



 , C =





7 1 3
0 1 1
0 0 2





Solution:

A is a symmetric matrix and is thus orthogonally diagonalizable (by the Spectral Theorem).

B is not diagonalizable since all of its eigenvalues are 0 so that if it were diagonalizable, it
would have to be the 0 matrix. Alternately, one can show that the geometric multiplicity of
the eigenvalue 0 is 2 (not 3).

C is diagonalizable since its eigenvalues: 7, 1, and 2, are distinct. It is not orthogonally
diagonalizable since the only such are symmetric matrices [Homework Set 9, #8].

B–6. Let A :=





−1 0
1 −1
0 1



 . By a routine computation the matrix A∗A =

(

2 −1
−1 2

)

has eigen-

values 3 and 1 with corresponding eigenvectors

(

1
−1

)

and

(

1
1

)

,

a) Use this to find the singular value decomposition of A .

Solution: The singular values of A are σ1 =
√

3 and σ2 =
√

1 = 1 with corresponding

orthonormal eigenvectors ~v1 =

(

1/
√

2

−1/
√

2

)

and ~v2 =

(

1/
√

2

1/
√

2

)

. Note that it is traditional

to label these so that σ1 is the largest singular value. [If you number these differently, then
you must use a consistent convention in part b) since the best rank 1 approximation is
always associated with the largest singular value.]

Then the orthonormal ~uj ’s are

~u1 =
A~v1√

3
=

1√
3





−1 0
1 −1
0 1





(

1/
√

2

−1/
√

2

)

=
1√
6





−1
2

−1



 ,

~u2 =
A~v2

1
=





−1 0
1 −1
0 1





(

1/
√

2

1/
√

2

)

=
1√
2





−1
0
1



 .
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The singular value decomposition of A is then

A = σ1~u1~v
T
1 + σ2~u2~v

T
2 =

√
3√
6





−1
2

−1





1√
2

(

1 −1
)

+
1√
2





−1
0
1





1√
2

(

1 1
)

=
1

2





−1 1
2 −2

−1 1



 +
1

2





−1 −1
0 0
1 1





(3)

Equivalently, A = UΣV T , where U is an orthogonal 3× 3 matrix whose columns are ~u1 ,
~u2 , and ~u3 with ~u3 a unit vector orthogonal to ~u1 and ~u2 (we never need to compute ~u3

explicitly), V an orthogonal 2 × 2 matrix whose columns are ~v1 and ~v2 , and Σ a 3 × 2
matrix containing the singular values of A . Thus

U =









−1/
√

6 −1/
√

2
...

2/
√

6 0 ~u3

−1/
√

6 1/
√

2
...









, Σ :=





√
3 0

0 1
0 0



 , V :=

(

1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)

.

b) Find the best rank 1 approximation to A .

Solution: From equation (3), this is σ1~u1~v
T
1 =

1

2





−1 1
2 −2

−1 1




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