Signature

PRINTED NAME

Math 312 March 21, 2013

DIRECTIONS This exam has two parts. Part A has shorter 5 questions, (10 points each so total 50 points) while Part B had 5 problems (15 points each, so total is 75 points). Maximum score is 125 points.

Exam 2

Closed book, no calculators or computers– but you may use one $3'' \times 5''$ card with notes on both sides. *Clarity and neatness count*.

PART A: Five short answer questions (10 points each, so 50 points).

A-1. Let A be a 5×5 real matrix with det A = -1. What is det(-2A)?

- A-2. We consider the equation $A\mathbf{x} = \mathbf{b}$ where \mathbf{x} and \mathbf{b} are in \mathbb{R}^4 and A is a 4×4 matrix with determinant 7. True or False and Why?
 - a) For some vector **b** the equation $A\mathbf{x} = \mathbf{b}$ has exactly one solution.
 - b) For some vector **b** the equation $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions.
 - c) For some vector **b** the equation $A\mathbf{x} = \mathbf{b}$ has no solution.
 - d) For all vectors **b** the equation $A\mathbf{x} = \mathbf{b}$ has at least one solution.

A-3. A matrix is *nilpotent* if $A^k = 0$ for some positive integer k [Example: $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$]

If λ is an eigenvalue of a nilpotent matrix, show that $\lambda = 0$ [SUGGESTION: Begin with $A\vec{v} = \lambda\vec{v}$].

A-4. In \mathbb{R}^4 , find the distance from the point (1, -2, 0, 3) to the "plane" $x_1 + 3x_2 - x_3 + x_4 = 0$.

A–5. In \mathbb{R}^n with the usual inner product, show that

$$\|\vec{x} + \vec{y}\|^2 - \|\vec{x} - \vec{y}\|^2 = 4\langle \vec{x}, \vec{y} \rangle$$

PART B Five questions, 15 points each (so 75 points total).

B-1. Find the eigenvalues and eigenvectors of the matrix $A = \begin{pmatrix} 3 & 2 \\ 4 & 5 \end{pmatrix}$.

- B-2. The matrix $B = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$ has eigenvalues $\lambda_1 = 5$ and $\lambda_2 = -1$ with corresponding eigenvectors $\vec{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\vec{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Use this to solve the differential equation $\frac{d\vec{x}(t)}{dt} = B\vec{x}(t)$ with initial condition $\vec{x}(0) = (2, 0)$.
- B–3. For certain polynomials f, g, and h say we are given the following table of inner products:

$\langle \ , \ \rangle$	f	g	h
f	4	0	8
g	0	1	0
h	8	0	50

For example, $\langle \mathbf{g}, \mathbf{h} \rangle = \langle \mathbf{h}, \mathbf{g} \rangle = 0$. Let *E* be the span of **f** and **g**.

- a) Compute $\langle \mathbf{f}, \mathbf{g} + \mathbf{h} \rangle$.
- b) Compute $\|\mathbf{g} + \mathbf{h}\|$.
- c) Find $\operatorname{Proj}_E \mathbf{h}$. [Express your solution as linear combinations of \mathbf{f} and \mathbf{g} .]
- d) Find an orthonormal basis of the span of \mathbf{f} , \mathbf{g} , and \mathbf{h} . [Express your results as linear combinations of \mathbf{f} , \mathbf{g} , and \mathbf{h} .]

B–4. Consider the space \mathcal{P}_2 of polynomials of degree at most two with the following inner product:

$$\langle p, q \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1)$$

- a) Compute the inner product of the polynomials p(x) := 1 and q(x) := x.
- b) Using this inner product, find an orthogonal basis for the space \mathcal{P}_2 .
- B-5. Say you have done an experiment and obtained the data points (-1,1), (0,-1), (1,-1), and (2,3). Based on some other evidence you believe this data should fit a curve of the form $y = a + bx^2$.
 - a) Write the (over-determined) system of linear equations you would ideally like to solve for the unknown coefficients a and b.
 - b) Use the method of least squares to find the *normal equations* for the coefficients a and b.
 - c) Solve the normal equations to find the coefficients a and b explicitly (numbers, like 3/5 and -2).