Math 312
Exam 2
Jerry L. Kazdan
9:00-10:20
March 21, 2013
Directions This exam has two parts. Part A has shorter 5 questions, (10 points each so total 50 points) while Part B had 5 problems (15 points each, so total is 75 points). Maximum score is 125 points.
Closed book, no calculators or computers- but you may use one $3^{\prime \prime} \times 5^{\prime \prime}$ card with notes on both sides. Clarity and neatness count.

Part A: Five short answer questions (10 points each, so 50 points).
A-1. Let A be a 5×5 real matrix with $\operatorname{det} A=-1$. What is $\operatorname{det}(-2 A)$?

A-2. We consider the equation $A \mathbf{x}=\mathbf{b}$ where \mathbf{x} and \mathbf{b} are in \mathbb{R}^{4} and A is a 4×4 matrix with determinant 7 . True or False - and Why?
a) For some vector \mathbf{b} the equation $A \mathbf{x}=\mathbf{b}$ has exactly one solution.
b) For some vector \mathbf{b} the equation $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions.

Score	
A-1	
A-2	
A-3	
A-4	
A-5	
B-1	
B-2	
B-3	
B-4	
B-5	
Total	

c) For some vector \mathbf{b} the equation $A \mathbf{x}=\mathbf{b}$ has no solution.
d) For all vectors \mathbf{b} the equation $A \mathbf{x}=\mathbf{b}$ has at least one solution.

A-3. A matrix is nilpotent if $A^{k}=0$ for some positive integer k [Example: $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$]
If λ is an eigenvalue of a nilpotent matrix, show that $\lambda=0$ [SugGestion: Begin with $A \vec{v}=\lambda \vec{v}]$.

A-4. In \mathbb{R}^{4}, find the distance from the point $(1,-2,0,3)$ to the "plane" $x_{1}+3 x_{2}-x_{3}+x_{4}=0$.

A-5. In \mathbb{R}^{n} with the usual inner product, show that

$$
\|\vec{x}+\vec{y}\|^{2}-\|\vec{x}-\vec{y}\|^{2}=4\langle\vec{x}, \vec{y}\rangle
$$

Part B Five questions, 15 points each (so 75 points total).
B-1. Find the eigenvalues and eigenvectors of the matrix $A=\left(\begin{array}{ll}3 & 2 \\ 4 & 5\end{array}\right)$.

B-2. The matrix $B=\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right)$ has eigenvalues $\lambda_{1}=5$ and $\lambda_{2}=-1$ with corresponding eigenvectors $\vec{v}_{1}=\binom{1}{2}$ and $\vec{v}_{2}=\binom{1}{-1}$. Use this to solve the differential equation $\frac{d \vec{x}(t)}{d t}=B \vec{x}(t)$ with initial condition $\vec{x}(0)=(2,0)$.

B-3. For certain polynomials \mathbf{f}, \mathbf{g}, and \mathbf{h} say we are given the following table of inner products:

$\langle\rangle$,	\mathbf{f}	\mathbf{g}	\mathbf{h}
\mathbf{f}	4	0	8
\mathbf{g}	0	1	0
\mathbf{h}	8	0	50

For example, $\langle\mathbf{g}, \mathbf{h}\rangle=\langle\mathbf{h}, \mathbf{g}\rangle=0$. Let E be the span of \mathbf{f} and \mathbf{g}.
a) Compute $\langle\mathbf{f}, \mathbf{g}+\mathbf{h}\rangle$.
b) Compute $\|\mathbf{g}+\mathbf{h}\|$.
c) Find $\operatorname{Proj}_{E} \mathbf{h}$. [Express your solution as linear combinations of \mathbf{f} and \mathbf{g}.]
d) Find an orthonormal basis of the span of \mathbf{f}, \mathbf{g}, and \mathbf{h}. [Express your results as linear combinations of \mathbf{f}, \mathbf{g}, and \mathbf{h}.]

B-4. Consider the space \mathcal{P}_{2} of polynomials of degree at most two with the following inner product: $\langle p, q\rangle=p(-1) q(-1)+p(0) q(0)+p(1) q(1)$.
a) Compute the inner product of the polynomials $p(x):=1$ and $q(x):=x$.
b) Using this inner product, find an orthogonal basis for the space \mathcal{P}_{2}.

B-5. Say you have done an experiment and obtained the data points $(-1,1),(0,-1),(1,-1)$, and $(2,3)$. Based on some other evidence you believe this data should fit a curve of the form $y=a+b x^{2}$.
a) Write the (over-determined) system of linear equations you would ideally like to solve for the unknown coefficients a and b.
b) Use the method of least squares to find the normal equations for the coefficients a and b.
c) Solve the normal equations to find the coefficients a and b explicitly (numbers, like $3 / 5$ and -2).

