Signature	Printi	ed Name	
Math 312 March 21, 2013	Exam 2	Jerry L. Kazdan 9:00 – 10:20	
points) while Part B had 5 points.	s two parts. Part A has shorter 5 que problems (15 points each, so total is or computers—but you may use on count.	s 75 points). Maximum score is 125	
Part A: Five short answer	questions (10 points each, so 50 points	ints).	
A-1. Let A be a 5×5 real matrix with det $A = -1$. What is det $(-2A)$?		$\det(-2A)$?	
		A-1	
		A-2	
A-2. We consider the equa			
	minant 7. True or False – and Why the equation $A\mathbf{x} = \mathbf{b}$ has exactly or	1	
b) For some vector \mathbf{b} th	the equation $A\mathbf{x} = \mathbf{b}$ has infinitely many solution	A-5	
		B-1	
		B-2	
		many solutions. B-3	
		B-4	
		B-5	
		Total	
c) For some vector b	the equation $A\mathbf{x} = \mathbf{b}$ has no solution	on.	

d) For all vectors \mathbf{b} the equation $A\mathbf{x} = \mathbf{b}$ has at least one solution.

A-3. A matrix is *nilpotent* if $A^k = 0$ for some positive integer k [Example: $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$]

If λ is an eigenvalue of a nilpotent matrix, show that $\lambda=0$ [Suggestion: Begin with $A\vec{v}=\lambda\vec{v}$].

A-4. In \mathbb{R}^4 , find the distance from the point (1, -2, 0, 3) to the "plane" $x_1 + 3x_2 - x_3 + x_4 = 0$.

A-5. In \mathbb{R}^n with the usual inner product, show that

$$\|\vec{x} + \vec{y}\|^2 - \|\vec{x} - \vec{y}\|^2 = 4\langle \vec{x}, \vec{y} \rangle$$

Part B Five questions, 15 points each (so 75 points total).

B–1. Find the eigenvalues and eigenvectors of the matrix $A = \begin{pmatrix} 3 & 2 \\ 4 & 5 \end{pmatrix}$.

Name (print)

B-2. The matrix $B = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$ has eigenvalues $\lambda_1 = 5$ and $\lambda_2 = -1$ with corresponding eigenvectors $\vec{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $\vec{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Use this to solve the differential equation $\frac{d\vec{x}(t)}{dt} = B\vec{x}(t)$ with initial condition $\vec{x}(0) = (2, 0)$.

4

B-3. For certain polynomials \mathbf{f} , \mathbf{g} , and \mathbf{h} say we are given the following table of inner products:

$\langle \ , \ \rangle$	f	g	h
f	4	0	8
g	0	1	0
h	8	0	50

For example, $\langle \mathbf{g}, \mathbf{h} \rangle = \langle \mathbf{h}, \mathbf{g} \rangle = 0$. Let E be the span of \mathbf{f} and \mathbf{g} .

a) Compute $\langle \mathbf{f}, \mathbf{g} + \mathbf{h} \rangle$.

b) Compute $\|\mathbf{g} + \mathbf{h}\|$.

c) Find $\text{Proj}_E \mathbf{h}$. [Express your solution as linear combinations of \mathbf{f} and \mathbf{g} .]

d) Find an orthonormal basis of the span of \mathbf{f} , \mathbf{g} , and \mathbf{h} . [Express your results as linear combinations of \mathbf{f} , \mathbf{g} , and \mathbf{h} .]

Name	(print)	

B–4. Consider the space \mathcal{P}_2 of polynomials of degree at most two with the following inner product:

$$\langle p, q \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1).$$

a) Compute the inner product of the polynomials p(x) := 1 and q(x) := x.

.

b) Using this inner product, find an orthogonal basis for the space \mathcal{P}_2 .

- B–5. Say you have done an experiment and obtained the data points (-1,1), (0,-1), (1,-1), and (2,3). Based on some other evidence you believe this data should fit a curve of the form $y=a+bx^2$.
 - a) Write the (over-determined) system of linear equations you would ideally like to solve for the unknown coefficients a and b.

b) Use the method of least squares to find the *normal equations* for the coefficients a and b.

c) Solve the normal equations to find the coefficients a and b explicitly (numbers, like 3/5 and -2).