Maxima and Minima

Functions of one variable (review).
Interpret the function:
as a graph $y=f(x)$
as the position of a particle $y=g(t)$ at time t.
The derivative: slope of tangent line or velocity.
At a local maximum or minimum the derivative is zero.

EXAMPLE: Standard minimum $f(x, y)=x^{2}+3 y^{2}$

Find critical points:

$$
\partial_{x} f(x, y)=2 x, \quad \partial_{y} f(x, y)=6 y
$$

so the only critical point is the origin, $(0,0)$.
Second derivative test:

$$
\partial_{x x} f(x, y)=2, \quad \partial_{x y} f(x, y)=0, \quad \partial_{y y} f(x, y)=6
$$

$f^{\prime \prime}(0,0)$ is the diagonal matrix

$$
f^{\prime \prime}(0,0)=\left(\begin{array}{ll}
2 & 0 \\
0 & 6
\end{array}\right) .
$$

This is positive definite so the origin is a local minimum.

EXAMPLE: Standard maximum $f(x, y)=-\left(x^{2}+y^{2}\right)$

EXAMPLE: Standard saddle $f(x, y)=-x^{2}+3 y^{2}$

EXAMPLE: $\quad f(x, y)=\frac{3 x^{4}-4 x^{3}-12 x^{2}+12}{12\left(1+y^{2}\right)}$

The curve on the left is $f(x, 0)$. From the graph you see one saddle, one max, and one min, all on the x axis.

Compute the critical points:
$\partial_{x} f(x, y)=\frac{x^{3}-x^{2}-2 x}{1+y^{2}}, \quad \partial_{y} f(x, y)=\frac{-\left(3 x^{4}-4 x^{3}-12 x^{2}+12\right) y}{6\left(1+y^{2}\right)^{2}}$
Critical points: $\quad(0,0), \quad(-1,0), \quad(2,0)$.

Second derivative test. The second partial derivatives take more work to compute:

$$
f^{\prime \prime}(x, y)=\left(\begin{array}{cc}
\frac{3 x^{2}-2 x-2}{1+y^{2}} & \frac{-2\left(x^{3}-x^{2}-2 x\right) y}{\left(1+y^{2}\right)^{2}} \\
\frac{-2\left(x^{3}-x^{2}-2 x\right) y}{\left(1+y^{2}\right)^{2}} & \frac{\left(3 y^{2}-1\right)\left(3 x^{4}-4 x^{3}-12 x^{2}+12\right)}{6\left(1+y^{2}\right)^{3}}
\end{array}\right)
$$

Thus, the second derivative matrices at the critical points are:

$$
\begin{aligned}
f^{\prime \prime}(0,0) & =\left(\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right) & & \max \\
f^{\prime \prime}(2,0) & =\left(\begin{array}{cc}
6 & 0 \\
0 & \frac{10}{3}
\end{array}\right) & & \min \\
f^{\prime \prime}(-1,0) & =\left(\begin{array}{ll}
3 & 0 \\
0 & \frac{-7}{6}
\end{array}\right) & & \text { saddle }
\end{aligned}
$$

Examples of Degenerate Critical Points

Moral: the second derivative test is inconclusive.
Degenerate saddle at the origin:

$$
\begin{gathered}
f(x, y)=x^{2}+y^{3} \\
f^{\prime \prime}(0,0)=\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right)
\end{gathered}
$$

Degenerate minimum at the origin:

$$
\begin{gathered}
f(x, y)=x^{2}+y^{4} \\
f^{\prime \prime}(0,0)=\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right)
\end{gathered}
$$

Degenerate maximum at the origin:

$$
\begin{gathered}
f(x, y)=-\left(x^{4}+y^{4}\right) \\
f^{\prime \prime}(0,0)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
\end{gathered}
$$

Degenerate monkey saddle at the origin:

EXAMPLE: $\quad f(x, y)=\left(2 x^{2}+3 y^{2}\right) e^{\left(1-x^{2}-y^{2}\right)}$

Clearly we see five critical points: two maxima, two saddle points, and one minima (in the pit).

Find them:

$$
\begin{aligned}
& \partial_{x} f(x, y)=2 x\left[2-\left(2 x^{2}+3 y^{2}\right)\right] e^{\left(1-x^{2}-y^{2}\right)} \\
& \partial_{y} f(x, y)=2 y\left(3-\left(2 x^{2}+3 y^{2}\right)\right] e^{\left(1-x^{2}-y^{2}\right)} .
\end{aligned}
$$

So $\partial_{x} f(x, y)=0$ and $\partial_{y} f(x, y)=0$ at the five points

$$
(0,0), \quad(\pm 1,0), \quad \text { and } \quad(0, \pm 1) .
$$

Classify the critical points (second derivative test):

$$
\begin{aligned}
& \partial_{x x} f(x, y)=2\left[2-8 x^{2}-\left(1-2 x^{2}\right)\left(2 x^{2}+3 y^{2}\right)\right] e^{1-x^{2}-y^{2}} \\
& \partial_{x y} f(x, y)=4 x y\left[-5+\left(2 x^{2}+3 y^{2}\right)\right] e^{1-x^{2}-y^{2}} \\
& \partial_{x y} f(x, y)=2\left[3-12 y^{2}-\left(1-2 y^{2}\right)\left(2 x^{2}+3 y^{2}\right)\right] e^{1-x^{2}-y^{2}}
\end{aligned}
$$

Thus the second derivative (Hessian) matrices

$$
f^{\prime \prime}(x, y)=\left(\begin{array}{ll}
\partial_{x x} f(x, y) & \partial_{x y} f(x, y) \\
\partial_{x y} f(x, y) & \partial_{y y} f(x, y)
\end{array}\right)
$$

at these five critical points are (as anticipated)

$$
\begin{aligned}
f^{\prime \prime}(0,0) & =\left(\begin{array}{cc}
4 e & 0 \\
0 & 6 e
\end{array}\right) & & \text { local min } \\
f^{\prime \prime}(\pm 1,0) & =\left(\begin{array}{cc}
-8 & 0 \\
0 & 2
\end{array}\right) & & \text { saddles } \\
f^{\prime \prime}(0, \pm 1) & =\left(\begin{array}{cc}
-2 & 0 \\
0 & -12
\end{array}\right) & & \text { maxima. }
\end{aligned}
$$

Exercise Let A be an $n \times n$ real invertible symmetric matrix and $f(X):=\langle x, A x\rangle e^{-\|X\|^{2}}, X \in \mathbb{R}^{n}$. Show that critical points of f are precisely the origin and the \pm unit eigenvectors of A. If the eigenvalues of A are distinct, there are $2 n+1$ critical points. [The classification of these critical points is more complicated - but reasonable. For instance, it is clear that $f^{\prime \prime}(0)=2 A$.]

Let $f(x, y)$ be a smooth function on \mathbb{R}^{2} with only one critical point: a strict local minimum at the origin.
Must this be the global minimum?
For a function of one variable, this must be the global min - but not for functions of several variables. The simplest example is probably the polynomial

$$
f(x, y):=(1-y)^{3} x^{2}+y^{2}
$$

Perhaps easier to visualize are

$$
f(x, y):=\left(1-y^{2}\right)^{3} x^{2}+y^{2} \quad \text { and } \quad g(x, y):=\frac{\left(1-y^{2}\right)^{3} x^{2}+y^{2}}{\left(1+y^{2}\right)^{3}}
$$

